Since r230724 ("Skip promotable allocas to improve performance at -O0"), there is a regression in the generated debug info for those non-instrumented variables. When inspecting such a variable's value in LLDB, you often get garbage instead of the actual value. ASan instrumentation is inserted before the creation of the non-instrumented alloca. The only allocas that are considered standard stack variables are the ones declared in the first basic-block, but the initial instrumentation setup in the function breaks that invariant.
This patch makes sure uninstrumented allocas stay in the first BB.
Differential Revision: http://reviews.llvm.org/D11179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242510 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241888 91177308-0d34-0410-b5e6-96231b3b80d8
It can be more robust than copying debug info from first non-alloca
instruction in the entry basic block. We use the same strategy in
coverage instrumentation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240738 91177308-0d34-0410-b5e6-96231b3b80d8
Do not instrument globals that are placed in sections containing "__llvm"
in their name.
This fixes a bug in ASan / PGO interoperability. ASan interferes with LLVM's
PGO, which places its globals into a special section, which is memcpy-ed by
the linker as a whole. When those goals are instrumented, ASan's memcpy wrapper
reports an issue.
http://reviews.llvm.org/D10541
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240723 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the LLVM part of the PPC memory sanitizer implementation in
D10648.
Reviewers: kcc, samsonov, willschm, wschmidt, eugenis
Reviewed By: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240627 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids creating an unnecessary undefined reference on targets such as
NVPTX that require such references to be declared in asm output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240321 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240131 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239761 91177308-0d34-0410-b5e6-96231b3b80d8
DebugLoc::getFnDebugLoc() should soon be removed. Also,
getDISubprogram() might become more effective soon and wouldn't need to
scan debug locations at all, if function-level metadata would be emitted
by Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239586 91177308-0d34-0410-b5e6-96231b3b80d8
The following code triggers a fatal error in the compiler instrumentation
of ASan on Darwin because we place the attribute into llvm.metadata section,
which does not have the proper MachO section name.
void foo() __attribute__((annotate("custom")));
void foo() {;}
This commit reorders the checks so that we skip everything in llvm.metadata
first. It also removes the hard failure in case the section name does not
parse. That check will be done lower in the compilation pipeline anyway.
(Reviewed in http://reviews.llvm.org/D9093.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239379 91177308-0d34-0410-b5e6-96231b3b80d8
Removed the redundant "llvm::" from class names in InstrProfiling.cpp
clang-format is ran on the changes.
Patch from Betul Buyukkurt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239034 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bit I forgot in r238335. In addition to the data record and
the counter, we can also move the name of the counter to the comdat for
the associated function.
I'm also adding an IR test case to check that these three elements are
placed in the proper comdat.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238351 91177308-0d34-0410-b5e6-96231b3b80d8
Counter symbols created for linkonce functions are not discarded by ELF
linkers unless the symbols are placed in the same comdat section as its
associated function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238335 91177308-0d34-0410-b5e6-96231b3b80d8
We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it.
Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237169 91177308-0d34-0410-b5e6-96231b3b80d8
Second attempt; instead of using a named local variable, passing
arguments directly to `createSanitizerCtorAndInitFunctions` worked
on Windows.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8780
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236951 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This gives frontend more precise control over collected coverage
information. User can still override these options by passing
-mllvm flags.
No functionality change.
Test Plan: regression test suite.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9539
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236687 91177308-0d34-0410-b5e6-96231b3b80d8
This makes use of the new API which can remove attributes from a set given a builder.
This is much faster than creating a temporary set and reduces llc time by about 0.3% which was all spent creating temporary attributes sets on the context.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236668 91177308-0d34-0410-b5e6-96231b3b80d8
This change is the second of 3 patches to add support for specifying
the profile output from the command line via -fprofile-instr-generate=<path>,
where the specified output path/file will be overridden by the
LLVM_PROFILE_FILE environment variable.
This patch adds the necessary support to the llvm instrumenter, specifically
a new member of GCOVOptions for clang to save the specified filename, and
support for calling the new compiler-rt interface from __llvm_profile_init.
Patch by Teresa Johnson. Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236288 91177308-0d34-0410-b5e6-96231b3b80d8
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236120 91177308-0d34-0410-b5e6-96231b3b80d8
Delete subclasses of (the already defunct) `DIScope`, updating users to
use the raw pointers from the `Metadata` hierarchy directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235356 91177308-0d34-0410-b5e6-96231b3b80d8
Stop using `DIDescriptor` and its subclasses in the `DebugInfoFinder`
API, as well as the rest of the API hanging around in `DebugInfo.h`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235240 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing gutting `DIDescriptor` subclasses; this edition,
`DICompileUnit` and `DIFile`. In the name of PR23080.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235055 91177308-0d34-0410-b5e6-96231b3b80d8
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234850 91177308-0d34-0410-b5e6-96231b3b80d8
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234290 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Instead of making a local copy of `checkInterfaceFunction` for each
sanitizer, move the function in a common place.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8775
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234220 91177308-0d34-0410-b5e6-96231b3b80d8