COFF/PE, so the relocation model is never static. Loosen the assertion
accordingly. The relocation can still be emitted properly, as it will be
converted to an IMAGE_REL_ARM_ADDR32 which will be resolved by the loader
taking the base relocation into account. This is necessary to permit the
emission of long calls which can be controlled via the -mlong-calls option in
the driver.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210399 91177308-0d34-0410-b5e6-96231b3b80d8
The messages were
"PR19753: Optimize comparisons with "ashr exact" of a constanst."
"Added support to optimize comparisons with "lshr exact" of a constant."
They were not correctly handling signed/unsigned operation differences,
causing pr19958.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210393 91177308-0d34-0410-b5e6-96231b3b80d8
This ensures that member functions, for example, are entered into
pubnames with their fully qualified name, rather than inside the global
namespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210379 91177308-0d34-0410-b5e6-96231b3b80d8
addrspacecast X addrspace(M)* to Y addrspace(N)*
-->
bitcast X addrspace(M)* to Y addrspace(M)*
addrspacecast Y addrspace(M)* to Y addrspace(N)*
Updat all affected tests and add several new tests in addrspacecast.ll.
This patch is based on http://reviews.llvm.org/D2186 (authored by Matt
Arsenault) with fixes and more tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210375 91177308-0d34-0410-b5e6-96231b3b80d8
Prevent the early elimination of sections in the object writer. There may be
references to the section itself by other symbols, which may potentially not be
possible to resolve. ML (Visual Studio's Macro Assembler) also seems to retain
empty sections.
The elimination of symbols and sections which are unused should really occur at
the link phase. This will not cause any change in the resulting binary, simply
in the generated object files.
The adjustments to the other unit tests account for the fluctuating section
index caused by the appearance of sections which were previously discarded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210373 91177308-0d34-0410-b5e6-96231b3b80d8
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210367 91177308-0d34-0410-b5e6-96231b3b80d8
These checks were accidentally skipping the 0x prefix in the hex
offsets, then cunningly ignoring the prefix in the use of those captured
values.
Except in the case of the unit length, where the match was only matching
the leading '0' before the x in the 0x prefix, then matching that
against the length. We can't actually express the length association
here, as the length field in the Compile Unit header does not include
the length field itself, but the length field in the pubnames section
/does/ include the size of the length field in the Compile Unit header -
so the two numbers are actually 4 bytes different. Just skip matching
that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210364 91177308-0d34-0410-b5e6-96231b3b80d8
This was added to test that DW_AT_GNU_pubnames used sec_offset in DWARF4
and data4 in DWARF3 and below. Since then we've updated
DW_AT_GNU_pubnames to be a flag, rather than a section offset anyway.
Granted this still differs between DWARF 3 and DWARF 4
(FORM_flag_present versun FORM_flag) but it doesn't seem worthwhile
testing that codepath again here. It's covered adequately in many other
test cases.
And while I'm here, don't hardcode the byte size of the compile unit -
it's not relevant to this test and just makes it brittle if/when
anything changes in the way this CU is emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210362 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We were being too strict and not accounting for undefs.
Added a test case and fixed another one where we improved codegen.
Reviewers: grosbach, nadav, delena
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4039
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210361 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes a couple of lowering issues for little endian
PowerPC. The code for lowering BUILD_VECTOR contains a number of
optimizations that are only valid for big endian. For now, we disable
those optimizations for correctness. In the future, we will add
analogous optimizations that are correct for little endian.
When lowering a SHUFFLE_VECTOR to a VPERM operation, we again need to
make the now-familiar transformation of swapping the input operands
and complementing the permute control vector. Correctness of this
transformation is tested by the accompanying test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210336 91177308-0d34-0410-b5e6-96231b3b80d8
r210177 added lld Makefiles, r210245 added automatic build when the source is present.
This revision completes the set by adding the lld test and unittests to the check-all target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210318 91177308-0d34-0410-b5e6-96231b3b80d8
If we have common uses on separate paths in the tree; process the one with greater common depth first.
This makes sure that we do not assume we need to extract a load when it is actually going to be part of a vectorized tree.
Review: http://reviews.llvm.org/D3800
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210310 91177308-0d34-0410-b5e6-96231b3b80d8
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210302 91177308-0d34-0410-b5e6-96231b3b80d8
We extended the .section syntax to allow multiple sections with the
same name but different comdats, but currently we don't make sure that
the output section has that comdat symbol.
That happens to work with the code llc produces currently because it looks like
.section secName, "dr", one_only, "COMDATSym"
.globl COMDATSym
COMDATSym:
....
but that is not very friendly to anyone coding in assembly or even to
llc once we get comdat support in the IR.
This patch changes the coff object writer to make sure the comdat symbol is
output just after the section symbol, as required by the coff spec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210298 91177308-0d34-0410-b5e6-96231b3b80d8
Chandler correctly pointed out that I need an LLVM IR test for
r210282, which modified the vperm -> shuffle transform for little
endian PowerPC. This patch provides that test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210297 91177308-0d34-0410-b5e6-96231b3b80d8
Most issues are on mishandling s/zext.
Fixes:
1. When rebuilding new indices, s/zext should be distributed to
sub-expressions. e.g., sext(a +nsw (b +nsw 5)) = sext(a) + sext(b) + 5 but not
sext(a + b) + 5. This also affects the logic of recursively looking for a
constant offset, we need to include s/zext into the context of the searching.
2. Function find should return the bitwidth of the constant offset instead of
always sign-extending it to i64.
3. Stop shortcutting zext'ed GEP indices. LLVM conceptually sign-extends GEP
indices to pointer-size before computing the address. Therefore, gep base,
zext(a + b) != gep base, a + b
Improvements:
1. Add an optimization for splitting sext(a + b): if a + b is proven
non-negative (e.g., used as an index of an inbound GEP) and one of a, b is
non-negative, sext(a + b) = sext(a) + sext(b)
2. Function Distributable checks whether both sext and zext can be distributed
to operands of a binary operator. This helps us split zext(sext(a + b)) to
zext(sext(a) + zext(sext(b)) when a + b does not signed or unsigned overflow.
Refactoring:
Merge some common logic of handling add/sub/or in find.
Testing:
Add many tests in split-gep.ll and split-gep-and-gvn.ll to verify the changes
we made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210291 91177308-0d34-0410-b5e6-96231b3b80d8
This is a first step in seeing if it is possible to make llvm-nm produce
the same output as darwin's nm(1). Darwin's default format is bsd but its
-m output prints the longer Mach-O specific details. For now I added the
"-format darwin" to do this (whos name may need to change in the future).
As there are other Mach-O specific flags to nm(1) which I'm hoping to add some
how in the future. But I wanted to see if I could get the correct output for
-m flag using llvm-nm and the libObject interfaces.
I got this working but would love to hear what others think about this approach
to getting object/format specific details printed with llvm-nm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210285 91177308-0d34-0410-b5e6-96231b3b80d8
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210280 91177308-0d34-0410-b5e6-96231b3b80d8
Unused arguments were not being added to the argument list, but instead
treated as arbitrary scope variables. This meant they weren't carefully
added in the original argument order.
In this particular example, though, it turns out the argument is only
/mostly/ unused (well, actually it's entirely used, but in a specific
way). It's a struct that, due to ABI reasons, is decomposed into chunks
(exactly one chunk, since it has one member) and then passed. Since only
one of those chunks is used (SROA, etc, kill the original reconstitution
code) we don't have a location to describe the whole variable.
In this particular case, since the struct consists of just the one int,
once we have partial location information, this should have a location
that describes the entire variable (since the piece is the entirety of
the object).
And at some point we'll need to describe the location of even /entirely/
unused arguments so that they can at least be printed on function entry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210231 91177308-0d34-0410-b5e6-96231b3b80d8
Abstract variables within abstract scopes that are entirely optimized
away in their first inlining are omitted because their scope is not
present so the variable is never created. Instead, we should ensure the
scope is created so the variable can be added, even if it's been
optimized away in its first inlining.
This fixes the incorrect debug info in missing-abstract-variable.ll
(added in r210143) and passes an asserts self-hosting build, so
hopefully there's not more of these issues left behind... *fingers
crossed*.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210221 91177308-0d34-0410-b5e6-96231b3b80d8
We would previously assert here when trying to figure out the section
for the global.
This makes us handle the situation more gracefully since the IR isn't
malformed.
Differential Revision: http://reviews.llvm.org/D4022
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210215 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210186 91177308-0d34-0410-b5e6-96231b3b80d8
Along with a test case to demonstrate that due to inlining order there
are cases where abstract variable DIEs are not constructed since the
abstract subprogram was built due to a previous inlining that optimized
away those variables. This produces incorrect debug info (the 'missing'
abstract variable causes the inlined instance of that variable to be
emitted with a full description (name, line, file) rather than
referencing the abstract origin), but this commit at least ensures that
it doesn't crash...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210143 91177308-0d34-0410-b5e6-96231b3b80d8
The tests check that the following transform happens:
(ldr|str) X, [x20]
...
sub x20, x20, #16
->
(ldr|str) X, [x20], #-16
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210113 91177308-0d34-0410-b5e6-96231b3b80d8
This means the output of LowerFormalArguments returns a lowered
SDValue with the correct type (expected in SelectionDAGBuilder).
Without this, an assertion under a DEBUG macro triggers when those
types are passed on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210102 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210062 91177308-0d34-0410-b5e6-96231b3b80d8