several things that were neither in an anonymous namespace nor static
but not intended to be global.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51017 91177308-0d34-0410-b5e6-96231b3b80d8
When choosing between constraints with multiple options,
like "ir", test to see if we can use the 'i' constraint and
go with that if possible. This produces more optimal ASM in
all cases (sparing a register and an instruction to load it),
and fixes inline asm like this:
void test () {
asm volatile (" %c0 %1 " : : "imr" (42), "imr"(14));
}
Previously we would dump "42" into a memory location (which
is ok for the 'm' constraint) which would cause a problem
because the 'c' modifier is not valid on memory operands.
Isn't it great how inline asm turns 'missed optimization'
into 'compile failed'??
Incidentally, this was the todo in
PowerPC/2007-04-24-InlineAsm-I-Modifier.ll
Please do NOT pull this into Tak.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50315 91177308-0d34-0410-b5e6-96231b3b80d8
to the block that defines their operands. This doesn't work in the
case that the operand is an invoke, because invoke is a terminator
and must be the last instruction in a block.
Replace it with support in SelectionDAGISel for copying struct values
into sequences of virtual registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50279 91177308-0d34-0410-b5e6-96231b3b80d8
it is only a partial fix. This change is noise for most programs, but
speeds up Shootout-C++/matrix by 20%, Ptrdist/ks by 24%, smg2000 by 8%,
hexxagon by 9%, bzip2 by 9% (not sure I trust this), ackerman by 13%, etc.
OTOH, it slows down Shootout/fib2 by 40% (I'll update PR1877 with this info).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45354 91177308-0d34-0410-b5e6-96231b3b80d8
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment. This gives a primitive type for
which getTypeSize differed from getABITypeSize. For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).
This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition). Instead there is:
(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type. For a primitive type, this is the minimum number
of bits. For an i36 this is 36 bits. For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.
(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it). For an
i36 this is 40 bits, for an x86 long double it is 80 bits. This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes). There doesn't seem to be anything
corresponding to this in gcc.
(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment. For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS. This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes). This is
TYPE_SIZE in gcc.
Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize. This means that the size of an array
is the length times the getABITypeSize. It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize. Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case. So alloca's and mallocs should use getABITypeSize. Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.
Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.
In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases). I will get around to auditing these too at some point,
but I could do with some help.
Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize. I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers. If someone wants to pack these types more
tightly they can always use a packed struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
Due to darwin gcc bug, one version of darwin linker coalesces
static const int, which defauts PassID based pass identification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36652 91177308-0d34-0410-b5e6-96231b3b80d8
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
isel has its own particular features that it wants in the CFG, in order to
reduce the number of times a constant is computed, etc. Make sure that we
clean up the CFG before doing any other things for isel. Doing so can
dramatically reduce the number of split edges and reduce the number of
places that constants get computed. For example, this shrinks
CodeGen/Generic/phi-immediate-factoring.ll from 44 to 37 instructions on X86,
and from 21 to 17 MBB's in the output. This is primarily a code size win,
not a performance win.
This implements CodeGen/Generic/phi-immediate-factoring.ll and PR1296.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35575 91177308-0d34-0410-b5e6-96231b3b80d8