destination location of a memcpy/memmove. I'm not clear about whether
TBAA works on these, so I'm leaving it out for now. Dan, please revisit
this when convenient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119928 91177308-0d34-0410-b5e6-96231b3b80d8
allowing the memcpy to be eliminated.
Unfortunately, the requirements on byval's without explicit
alignment are really weak and impossible to predict in the
mid-level optimizer, so this doesn't kick in much with current
frontends. The fix is to change clang to set alignment on all
byval arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119916 91177308-0d34-0410-b5e6-96231b3b80d8
so don't claim they are. They are allocated using DAG.getNode, so attempts
to access MemSDNode fields results in reading off the end of the allocated
memory. This fixes crashes with "llc -debug" due to debug code trying to
print MemSDNode fields for these barrier nodes (since the crashes are not
deterministic, use valgrind to see this). Add some nasty checking to try
to catch this kind of thing in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119901 91177308-0d34-0410-b5e6-96231b3b80d8
It is now possible to navigate the B+-tree using NodeRef::subtree() and
NodeRef::size() without knowing the key and value template types used in the
tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119880 91177308-0d34-0410-b5e6-96231b3b80d8
that the noderefs are the first member in the object.
This is in preparation of detemplatization of tree navigation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119879 91177308-0d34-0410-b5e6-96231b3b80d8
Key and value objects may not be destructed instantly when they are erased from
the container, but they will be destructed eventually by the IntervalMap
destructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119873 91177308-0d34-0410-b5e6-96231b3b80d8
llvm/include/llvm/ADT/IntervalMap.h:334: error: '((llvm::IntervalMapImpl::DesiredNodeBytes / static_cast<unsigned int>(((2 * sizeof (KeyT)) + sizeof (ValT)))) >? 3u)' is not a valid template argument for type 'unsigned int' because it is a non-constant expression
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119790 91177308-0d34-0410-b5e6-96231b3b80d8
This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.
Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.
The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.
The IntervalMap is initially intended to be used with SlotIndex intervals for:
- Backing store for LiveIntervalUnion that is smaller and faster than std::set.
- Backing store for LiveInterval with less overhead than std::vector for typical
intervals and O(N log N) merging of large intervals. 99% of virtual registers
need 4 entries or less and would benefit from the small object optimization.
- Backing store for LiveDebugVariable which doesn't exist yet, but will track
debug variables during register allocation.
This is a work in progress. Missing items are:
- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119787 91177308-0d34-0410-b5e6-96231b3b80d8
MCStreamer instead of just MCObjectStreamer. Address changes cannot
be as efficient as we have to use DW_LNE_set_addres, but at least
most of the logic is shared.
This will be used so that, with CodeGen still using EmitDwarfLocDirective,
llvm-gcc is able to produce debug_line sections without needing an
assembler that supports .loc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119777 91177308-0d34-0410-b5e6-96231b3b80d8
This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.
Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.
The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.
The IntervalMap is initially intended to be used with SlotIndex intervals for:
- Backing store for LiveIntervalUnion that is smaller and faster than std::set.
- Backing store for LiveInterval with less overhead than std::vector for typical
intervals and O(N log N) merging of large intervals. 99% of virtual registers
need 4 entries or less and would benefit from the small object optimization.
- Backing store for LiveDebugVariable which doesn't exist yet, but will track
debug variables during register allocation.
This is a work in progress. Missing items are:
- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119772 91177308-0d34-0410-b5e6-96231b3b80d8
preserves LCSSA form out of ScalarEvolution and into the LoopInfo
class. Use it to check that SimplifyInstruction simplifications
are not breaking LCSSA form. Fixes PR8622.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119727 91177308-0d34-0410-b5e6-96231b3b80d8
The attached patch fixes IRBuilder and the NoFolder class so that when
NoFolder is used the instructions it generates are treated just like
the ones IRBuilder creates directly (insert into block, assign them a
name and debug info, as applicable).
It does this by
1) having NoFolder return Instruction*s instead of Value*s,
2) having IRBuilder call Insert(Value, Name) on values obtained from
the folder like it does on instructions it creates directly, and
3) adding an Insert(Constant*, const Twine& = "") overload which just
returns the constant so that the other folders shouldn't have any
extra overhead as long as inlining is enabled.
While I was there, I also added some missing (CreateFNeg and various
Create*Cast) methods to NoFolder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119614 91177308-0d34-0410-b5e6-96231b3b80d8
and testing is easier. A good example is the unknown-location.ll test that
now can just look for ".loc 1 0 0". We also don't use a DW_LNE_set_address for
every address change anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119613 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these maps may merge in the future, but for now it's convenient to have
a utility function for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119587 91177308-0d34-0410-b5e6-96231b3b80d8
memoize the results. This improves compile time in code which highly complex
expressions which get queried many times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119584 91177308-0d34-0410-b5e6-96231b3b80d8
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.
Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.
Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.
2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.
rdar://8663787, rdar://8241368
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119548 91177308-0d34-0410-b5e6-96231b3b80d8
instructions out of InstCombine and into InstructionSimplify. While
there, introduce an m_AllOnes pattern to simplify matching with integers
and vectors with all bits equal to one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119536 91177308-0d34-0410-b5e6-96231b3b80d8
simplified to itself (this can only happen in unreachable blocks).
Change it to return null instead. Hopefully this will fix some
buildbot failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119490 91177308-0d34-0410-b5e6-96231b3b80d8
cookie argument to the SourceMgr diagnostic stuff. This cleanly separates
LLVMContext's inlineasm handler from the sourcemgr error handling
definition, increasing type safety and cleaning things up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119486 91177308-0d34-0410-b5e6-96231b3b80d8
class, uses DominatorTree which is an analysis. This change moves all of
the tricky hasConstantValue logic to SimplifyInstruction, and replaces it
with a very simple literal implementation. I already taught users of
hasConstantValue that need tricky stuff to use SimplifyInstruction instead.
I didn't update InlineFunction because the IR looks like it might be in a
funky state at the point it calls hasConstantValue, which makes calling
SimplifyInstruction dangerous since it can in theory do a lot of tricky
reasoning. This may be a pessimization, for example in the case where
all phi node operands are either undef or a fixed constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119459 91177308-0d34-0410-b5e6-96231b3b80d8