In LICM, we have a check for an instruction which is guaranteed to execute and thus can't introduce any new faults if moved to the preheader. To handle a function which might unconditionally throw when first called, we check for any potentially throwing call in the loop and give up.
This is unfortunate when the potentially throwing condition is down a rare path. It prevents essentially all LICM of potentially faulting instructions where the faulting condition is checked outside the loop. It also greatly diminishes the utility of loop unswitching since control dependent instructions - which are now likely in the loops header block - will not be lifted by subsequent LICM runs.
define void @nothrow_header(i64 %x, i64 %y, i1 %cond) {
; CHECK-LABEL: nothrow_header
; CHECK-LABEL: entry
; CHECK: %div = udiv i64 %x, %y
; CHECK-LABEL: loop
; CHECK: call void @use(i64 %div)
entry:
br label %loop
loop: ; preds = %entry, %for.inc
%div = udiv i64 %x, %y
br i1 %cond, label %loop-if, label %exit
loop-if:
call void @use(i64 %div)
br label %loop
exit:
ret void
}
The current patch really only helps with non-memory instructions (i.e. divs, etc..) since the maythrow call down the rare path will be considered to alias an otherwise hoistable load. The one exception is that it does kick in for loads which are known to be invariant without regard to other possible stores, i.e. those marked with either !invarant.load metadata of tbaa 'is constant memory' metadata.
Differential Revision: http://reviews.llvm.org/D6725
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224965 91177308-0d34-0410-b5e6-96231b3b80d8
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen. This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.
We really should introduce a hook to control this property on a per target per address space basis. We may be loosing valuable optimizations in some address spaces by being too conservative.
Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224961 91177308-0d34-0410-b5e6-96231b3b80d8
A multiply cannot unsigned wrap if there are bitwidth, or more, leading
zero bits between the two operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224849 91177308-0d34-0410-b5e6-96231b3b80d8
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224847 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalAlias handling used to be after GlobalValue handling, which meant it was, in practice, dead code. r220165 moved GlobalAlias handling to be before GlobalValue handling, but also moved it to be before the max depth check, causing an assert due to a recursion depth limit violation.
This moves GlobalAlias handling forward to where it's safe, and changes the GlobalValue handling to only look at GlobalObjects.
Differential Revision: http://reviews.llvm.org/D6758
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224765 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix the case where more than 1 common instructions derived from the same
operand cannot be sunk. When a pair of value has more than 1 derived values
in both branches, only 1 derived value could be sunk.
- Replace BB1 -> (BB2, PN) map with joint value map, i.e.
map of (BB1, BB2) -> PN, which is more accurate to track common ops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224757 91177308-0d34-0410-b5e6-96231b3b80d8
Take two disjoint Loops L1 and L2.
LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.
This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.
Differential Revision: http://reviews.llvm.org/D6624
rdar://problem/19166231
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224740 91177308-0d34-0410-b5e6-96231b3b80d8
(X & INT_MIN) == 0 ? X ^ INT_MIN : X into X | INT_MIN
(X & INT_MIN) != 0 ? X ^ INT_MIN : X into X & INT_MAX
This fixes PR21993.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224676 91177308-0d34-0410-b5e6-96231b3b80d8
(X & INT_MIN) ? X & INT_MAX : X into X & INT_MAX
(X & INT_MIN) ? X : X & INT_MAX into X
(X & INT_MIN) ? X | INT_MIN : X into X
(X & INT_MIN) ? X : X | INT_MIN into X | INT_MIN
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224669 91177308-0d34-0410-b5e6-96231b3b80d8
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. Also, fix code to also return the modified switch when only
the truncation is performed.
This fixes an assertion crash.
Differential Revision: http://reviews.llvm.org/D6644
rdar://problem/19191835
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224588 91177308-0d34-0410-b5e6-96231b3b80d8
Backends recognize (-0.0 - X) as the canonical form for fneg
and produce better code. Eg, ppc64 with 0.0:
lis r2, ha16(LCPI0_0)
lfs f0, lo16(LCPI0_0)(r2)
fsubs f1, f0, f1
blr
vs. -0.0:
fneg f1, f1
blr
Differential Revision: http://reviews.llvm.org/D6723
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224583 91177308-0d34-0410-b5e6-96231b3b80d8
Reverts commit r224574 to appease buildbots:
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224576 91177308-0d34-0410-b5e6-96231b3b80d8
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.
Differential Revision: http://reviews.llvm.org/D6644
rdar://problem/19191835
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224574 91177308-0d34-0410-b5e6-96231b3b80d8
Some intrinsics, like s/uadd.with.overflow and umul.with.overflow, are already strength reduced.
This change adds other arithmetic intrinsics: s/usub.with.overflow, smul.with.overflow.
It completes the work on PR20194.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224417 91177308-0d34-0410-b5e6-96231b3b80d8
We can always choose an value for undef which might cause %V to shift
out an important bit except for one case, when %V is zero.
However, shl behaves like an identity function when the right hand side
is zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224405 91177308-0d34-0410-b5e6-96231b3b80d8
isKnownPredicate.
The motivation for this change is to optimize away checks in loops
like this:
limit = min(t, len)
for (i = 0 to limit)
if (i >= len || i < 0) throw_array_of_of_bounds();
a[i] = ...
Differential Revision: http://reviews.llvm.org/D6635
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224285 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
r223862 tried to also combine base-updating load/stores.
r224198 reverted it, as "it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown."
Reapply, with a fix to ignore non-normal load/stores.
Truncstores are handled elsewhere (you can actually write a pattern for
those, whereas for postinc loads you can't, since they return two values),
but it should be possible to also combine extloads base updates, by checking
that the memory (rather than result) type is of the same size as the addend.
Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.
We can do the same thing for generic load/stores.
Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).
Differential Revision: http://reviews.llvm.org/D6585
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224203 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r223862, as it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown. We'll investigate the issue and re-apply
when safe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224198 91177308-0d34-0410-b5e6-96231b3b80d8
Respect the MaxDepth recursion limit, doing otherwise will trigger an
assert in computeKnownBits.
This fixes PR21891.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224168 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
InstCombine infinite-loops for the testcase added
It is because InstCombine is generating instructions that can be
optimized by itself. Fix by not optimizing frem if the optimized
type is the same as original type.
rdar://problem/19150820
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6634
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224097 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the instruction combiner how to fold a call to 'insertqi' if
the 'length field' (3rd operand) is set to zero, and if the sum between
field 'length' and 'bit index' (4th operand) is bigger than 64.
From the AMD64 Architecture Programmer's Manual:
1. If the sum of the bit index + length field is greater than 64, then the
results are undefined;
2. A value of zero in the field length is defined as a length of 64.
This patch improves the existing combining logic for intrinsic 'insertqi'
adding extra checks to address both point 1. and point 2.
Differential Revision: http://reviews.llvm.org/D6583
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224054 91177308-0d34-0410-b5e6-96231b3b80d8
X shifted by undef results in undef because the undef value can
represent values greater than the width of the operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223968 91177308-0d34-0410-b5e6-96231b3b80d8
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.
We can do the same thing for generic load/stores.
Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).
Differential Revision: http://reviews.llvm.org/D6585
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223862 91177308-0d34-0410-b5e6-96231b3b80d8
patterns.
This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.
This reverts commit r223764.
Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.
Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.
All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.
With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.
For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
integer loads and stores. SSA values are tremendously more powerful
than "copy" intrinsics. Not doing this regresses massive amounts of
LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
SROA or every memcpy of a trivially copyable struct will prevent SSA
formation of the members of that struct. It essentially turns off
SROA.
- The closest alternative is to actually split the loads and stores when
partitioning with SROA, but this has all of the downsides historically
discussed of splitting up loads and stores -- the wide-store
information is fundamentally lost. We would also see performance
regressions for bitfield-heavy code and other places where the
integers aren't really intended to be split without seemingly
arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
a choice to make IMO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223813 91177308-0d34-0410-b5e6-96231b3b80d8
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
Removed some duplicate test cases from the file /test/Transforms/InstCombine/shift.ll.
test54 and test57 were duplicates of each other.
test55 and test58 were duplicates of each other.
(Removed test57 and test58)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223767 91177308-0d34-0410-b5e6-96231b3b80d8
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.
Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.
All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.
With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.
For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
integer loads and stores. SSA values are tremendously more powerful
than "copy" intrinsics. Not doing this regresses massive amounts of
LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
SROA or every memcpy of a trivially copyable struct will prevent SSA
formation of the members of that struct. It essentially turns off
SROA.
- The closest alternative is to actually split the loads and stores when
partitioning with SROA, but this has all of the downsides historically
discussed of splitting up loads and stores -- the wide-store
information is fundamentally lost. We would also see performance
regressions for bitfield-heavy code and other places where the
integers aren't really intended to be split without seemingly
arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
a choice to make IMO.
Differential Revision: http://reviews.llvm.org/D6548
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223764 91177308-0d34-0410-b5e6-96231b3b80d8
Disallow complex types of function-local metadata. The only valid
function-local metadata is an `MDNode` whose sole argument is a
non-metadata function-local value.
Part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223564 91177308-0d34-0410-b5e6-96231b3b80d8