This function attribute indicates that the function is not optimized
by any optimization or code generator passes with the
exception of interprocedural optimization passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189101 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds explicit calling convention types for the Win64 and
System V/x86-64 ABIs. This allows code to override the default, and use
the Win64 convention on a target that wants to use SysV (and
vice-versa). This is needed to implement the `ms_abi` and `sysv_abi` GNU
attributes.
Reviewers:
CC:
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186144 91177308-0d34-0410-b5e6-96231b3b80d8
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176075 91177308-0d34-0410-b5e6-96231b3b80d8
SSPStrong applies a heuristic to insert stack protectors in these situations:
* A Protector is required for functions which contain an array, regardless of
type or length.
* A Protector is required for functions which contain a structure/union which
contains an array, regardless of type or length. Note, there is no limit to
the depth of nesting.
* A protector is required when the address of a local variable (i.e., stack
based variable) is exposed. (E.g., such as through a local whose address is
taken as part of the RHS of an assignment or a local whose address is taken as
part of a function argument.)
This patch implements the SSPString attribute to be equivalent to
SSPRequired. This will change in a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173230 91177308-0d34-0410-b5e6-96231b3b80d8
- The XTARGET feature (inherited from old DG tests) was just confusing (and
barely ever used). The same effect can now be achieved with a combination of
the more useful REQUIRES and XFAIL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166305 91177308-0d34-0410-b5e6-96231b3b80d8
Add some data structures to represent for loops. These will be
referenced during object processing to do any needed iteration and
instantiation.
Add foreach keyword support to the lexer.
Add a mode to indicate that we're parsing a foreach loop. This allows
the value parser to early-out when processing the foreach value list.
Add a routine to parse foreach iteration declarations. This is
separate from ParseDeclaration because the type of the named value
(the iterator) doesn't match the type of the initializer value (the
value list). It also needs to add two values to the foreach record:
the iterator and the value list.
Add parsing support for foreach.
Add the code to process foreach loops and create defs based
on iterator values.
Allow foreach loops to be matched at the top level.
When parsing an IDValue check if it is a foreach loop iterator for one
of the active loops. If so, return a VarInit for it.
Add Emacs keyword support for foreach.
Add VIM keyword support for foreach.
Add tests to check foreach operation.
Add TableGen documentation for foreach.
Support foreach with multiple objects.
Support non-braced foreach body with one object.
Do not require types for the foreach declaration. Assume the iterator
type from the iteration list element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151164 91177308-0d34-0410-b5e6-96231b3b80d8
Multidefs are a bit unwieldy and incomplete. Remove them in favor of
another mechanism, probably for loops.
Revert "Make Test More Thorough"
Revert "Fix a typo."
Revert "Vim Support for Multidefs"
Revert "Emacs Support for Multidefs"
Revert "Document Multidefs"
Revert "Add a Multidef Test"
Revert "Update Test for Multidefs"
Revert "Process Multidefs"
Revert "Parser Multidef Support"
Revert "Lexer Support for Multidefs"
Revert "Add Multidef Data Structures"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141378 91177308-0d34-0410-b5e6-96231b3b80d8
longer than 80 columns. This replaces the heavy-handed "textwidth"
mechanism, and makes the trailing-whitespace highlighting lazy so
that it isn't constantly jumping on the user during typing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97267 91177308-0d34-0410-b5e6-96231b3b80d8
This time it's for real! I am going to hook this up in the frontends as well.
The inliner has some experimental heuristics for dealing with the inline hint.
When given a -respect-inlinehint option, functions marked with the inline
keyword are given a threshold just above the default for -O3.
We need some experiments to determine if that is the right thing to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95466 91177308-0d34-0410-b5e6-96231b3b80d8
code hints that it would be a good idea to inline
a function ("inline" keyword). No functional change
yet; FEs do not emit this and inliner does not use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80063 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
linkage: this linkage type only applies to declarations,
but ODR is only relevant to globals with definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66650 91177308-0d34-0410-b5e6-96231b3b80d8
and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66339 91177308-0d34-0410-b5e6-96231b3b80d8