Summary:
`ComputeNumSignBits` returns incorrect results for `srem` instructions.
This change fixes the issue and adds a test case.
Reviewers: nadav, nicholas, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8600
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233225 91177308-0d34-0410-b5e6-96231b3b80d8
To complement getSplat. This is more general than the binary
decomposition method as it also handles non-pow2 splat sizes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233195 91177308-0d34-0410-b5e6-96231b3b80d8
Currently this is only used to tweak the backend's memcpy inlining
heuristics, testing that isn't very helpful. A real test case will
follow in the next commit, where this behavior would cause a real
miscompilation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232895 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds limited support in ValueTracking for inferring known bits of a value from conditional expressions which must be true to reach the instruction we're trying to optimize. At this time, the feature is off by default. Once landed, I'm hoping for feedback from others on both profitability and compile time impact.
Forms of conditional value propagation have been tried in LLVM before and have failed due to compile time problems. In an attempt to side step that, this patch only considers conditions where the edge leaving the branch dominates the context instruction. It does not attempt full dataflow. Even with that restriction, it handles many interesting cases:
* Early exits from functions
* Early exits from loops (for context instructions in the loop and after the check)
* Conditions which control entry into loops, including multi-version loops (such as those produced during vectorization, IRCE, loop unswitch, etc..)
Possible applications include optimizing using information provided by constructs such as: preconditions, assumptions, null checks, & range checks.
This patch implements two approaches to the problem that need further benchmarking. Approach 1 is to directly walk the dominator tree looking for interesting conditions. Approach 2 is to inspect other uses of the value being queried for interesting comparisons. From initial benchmarking, it appears that Approach 2 is faster than Approach 1, but this needs to be further validated.
Differential Revision: http://reviews.llvm.org/D7708
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231879 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
With a diabolically crafted test case, we could recurse
through this code and return true instead of false.
The larger engineering crime is the use of magic numbers.
Added FIXME comments for those.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230515 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out there is a simpler way of checking that all bytes in a word are equal
than binary decomposition.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228503 91177308-0d34-0410-b5e6-96231b3b80d8
This patch folds fcmp in some cases of interest in Julia. The patch adds a function CannotBeOrderedLessThanZero that returns true if a value is provably not less than zero. I.e. the function returns true if the value is provably -0, +0, positive, or a NaN. The patch extends InstructionSimplify.cpp to fold instances of fcmp where:
- the predicate is olt or uge
- the first operand is provably not less than zero
- the second operand is zero
The motivation for handling these cases optimizing away domain checks for sqrt in Julia for common idioms such as sqrt(x*x+y*y)..
http://reviews.llvm.org/D6972
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227298 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
WillNotOverflowUnsignedAdd's smarts will live in ValueTracking as
computeOverflowForUnsignedAdd. It now returns a tri-state result:
never overflows, always overflows and sometimes overflows.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225329 91177308-0d34-0410-b5e6-96231b3b80d8
from before I removed thet non-const use of the function.
The unused variable that held the const_cast was already kindly removed
by Michael.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225143 91177308-0d34-0410-b5e6-96231b3b80d8
a cache of assumptions for a single function, and an immutable pass that
manages those caches.
The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.
Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.
For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225131 91177308-0d34-0410-b5e6-96231b3b80d8
PHI nodes can have zero operands in the middle of a transform. It is
expected that utilities in Analysis don't freak out when this happens.
Note that it is considered invalid to allow these misshapen phi nodes to
make it to another pass.
This fixes PR22086.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225126 91177308-0d34-0410-b5e6-96231b3b80d8
We would sometimes leave the out-param APInts untouched while going
through computeKnownBits. While I don't know of a way to trigger a bug
involving this in practice, it goes against the overall design of
computeKnownBits.
Found via code inspection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225109 91177308-0d34-0410-b5e6-96231b3b80d8
We know overflow always occurs if both ~LHSKnownZero * ~RHSKnownZero
and LHSKnownOne * RHSKnownOne overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225077 91177308-0d34-0410-b5e6-96231b3b80d8
WillNotOverflowUnsignedMul's smarts will live in ValueTracking as
computeOverflowForUnsignedMul. It now returns a tri-state result:
never overflows, always overflows and sometimes overflows.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225076 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalAlias handling used to be after GlobalValue handling, which meant it was, in practice, dead code. r220165 moved GlobalAlias handling to be before GlobalValue handling, but also moved it to be before the max depth check, causing an assert due to a recursion depth limit violation.
This moves GlobalAlias handling forward to where it's safe, and changes the GlobalValue handling to only look at GlobalObjects.
Differential Revision: http://reviews.llvm.org/D6758
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224765 91177308-0d34-0410-b5e6-96231b3b80d8
Respect the MaxDepth recursion limit, doing otherwise will trigger an
assert in computeKnownBits.
This fixes PR21891.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224168 91177308-0d34-0410-b5e6-96231b3b80d8
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
We were matching against the assume intrinsic in every check. Since we know that it must be an assume, this is just wasted work. Somewhat surprisingly, matching an intrinsic id is actually relatively expensive. It devolves to a string construction and comparison in Function::isIntrinsic.
I originally spotted this because it showed up in a performance profile of my compiler. I've since discovered a separate issue which seems to be the actual root cause, but this is minor perf goodness regardless.
I'm likely to follow up with another change to factor out the comparison matching. There's no need to match the compare instruction in every single one of the tests.
Differential Revision: http://reviews.llvm.org/D6312
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222709 91177308-0d34-0410-b5e6-96231b3b80d8
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221711 91177308-0d34-0410-b5e6-96231b3b80d8
Divides and remainder operations do not behave like other operations
when they are given poison: they turn into undefined behavior.
It's really hard to know if the operands going into a div are or are not
poison. Because of this, we should only choose to speculate if there
are constant operands which we can easily reason about.
This fixes PR21412.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221318 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
If we load from a location with range metadata, we can use information about the ranges of the loaded value for optimization purposes. This helps to remove redundant checks and canonicalize checks for other optimization passes. This particular patch checks whether a value is known to be non-zero from the range metadata.
Currently, these tests are against InstCombine. In theory, all of these should be InstSimplify since we're not inserting any new instructions. Moving the code may follow in a separate change.
Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5947
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220925 91177308-0d34-0410-b5e6-96231b3b80d8
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220341 91177308-0d34-0410-b5e6-96231b3b80d8
Our metadata scheme lazily assigns IDs to string metadata, but we have a mechanism to preassign them as well. Using a preassigned ID is helpful since we get compile time type checking, and avoid some (minimal) string construction and comparison. This change adds enum value for three existing metadata types:
+ MD_nontemporal = 9, // "nontemporal"
+ MD_mem_parallel_loop_access = 10, // "llvm.mem.parallel_loop_access"
+ MD_nonnull = 11 // "nonnull"
I went through an updated various uses as well. I made no attempt to get all uses; I focused on the ones which were easily grepable and easily to translate. For example, there were several items in LoopInfo.cpp I chose not to update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220248 91177308-0d34-0410-b5e6-96231b3b80d8
The newly introduced 'nonnull' metadata is analogous to existing 'nonnull' attributes, but applies to load instructions rather than call arguments or returns. Long term, it would be nice to combine these into a single construct. The value of the load is allowed to vary between successive loads, but null is not a valid value to be loaded by any load marked nonnull.
Reviewed by: Hal Finkel
Differential Revision: http://reviews.llvm.org/D5220
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220240 91177308-0d34-0410-b5e6-96231b3b80d8
up to where it actually works as intended. The problem is that
a GlobalAlias isa GlobalValue and so the prior block handled all of the
cases.
This allows us to constant fold based on the actual constant expression
in the global alias. As an example, see the last function in the newly
added test case which explicitly aligns an unaligned pointer using
constant expression math. Without this change, we fail to see that and
fold an alignment test to zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220164 91177308-0d34-0410-b5e6-96231b3b80d8
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.
r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:
assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
can propagate inverted known bits from the a to v.
assume(v | b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v.
assume(~(v | b) = a): For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v.
assume(v ^ b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v. For those bits in
b that are known to be one, we can propagate inverted
known bits from the a to v.
assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v. For those
bits in b that are known to be one, we can propagate
known bits from the a to v.
assume(v << c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v << c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >> c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >=_s c) where c is non-negative: The sign bit of v is zero
assume(v >_s c) where c is at least -1: The sign bit of v is zero
assume(v <=_s c) where c is negative: The sign bit of v is one
assume(v <_s c) where c is non-positive: The sign bit of v is one
assume(v <=_u c): Transfer the known high zero bits
assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
of 2, transfer one more)
A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217343 91177308-0d34-0410-b5e6-96231b3b80d8
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217342 91177308-0d34-0410-b5e6-96231b3b80d8
Given something like X01XX + X01XX, we know that the result must look
like X1XXX.
Adapted from a patch by Richard Smith, test-case written by me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216250 91177308-0d34-0410-b5e6-96231b3b80d8
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213670 91177308-0d34-0410-b5e6-96231b3b80d8
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213385 91177308-0d34-0410-b5e6-96231b3b80d8