Commit Graph

8 Commits

Author SHA1 Message Date
Hal Finkel
ec716cecda [PowerPC] Better scheduling for isel on P7/P8
isel is actually a cracked instruction on the P7/P8, and must start a dispatch
group. The scheduling model should reflect this so that we don't bunch too many
of them together when possible.

Thanks to Bill Schmidt and Pat Haugen for helping to sort this out.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227758 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-01 17:52:16 +00:00
Hal Finkel
6829815d96 [PowerPC] Readjust the loop unrolling threshold
Now that the way that the partial unrolling threshold for small loops is used
to compute the unrolling factor as been corrected, a slightly smaller threshold
is preferable. This is expected; other targets may need to re-tune as well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225566 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-10 00:31:10 +00:00
Hal Finkel
139bfee84c [PowerPC] Enable late partial unrolling on the POWER7
The P7 benefits from not have really-small loops so that we either have
multiple dispatch groups in the loop and/or the ability to form more-full
dispatch groups during scheduling. Setting the partial unrolling threshold to
44 seems good, empirically, for the P7. Compared to using no late partial
unrolling, this yields the following test-suite speedups:

SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding
	-66.3253% +/- 24.1975%
SingleSource/Benchmarks/Misc-C++/oopack_v1p8
	-44.0169% +/- 29.4881%
SingleSource/Benchmarks/Misc/pi
	-27.8351% +/- 12.2712%
SingleSource/Benchmarks/Stanford/Bubblesort
	-30.9898% +/- 22.4647%

I've speculatively added a similar setting for the P8. Also, I've noticed that
the unroller does not quite calculate the unrolling factor correctly for really
tiny loops because it neglects to account for the fact that not every loop body
replicant contains an ending branch and counter increment. I'll fix that later.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225522 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 15:51:16 +00:00
Hal Finkel
3f784d82ff [PowerPC] Correct P7 dispatch unit allocation for vector instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205222 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-31 17:02:10 +00:00
Hal Finkel
3873f8265b [PowerPC] VSX instruction latency corrections
The vector divide and sqrt instructions have high latencies, and the scalar
comparisons are like all of the others. On the P7, permutations take an extra
cycle over purely-simple vector ops.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205096 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 13:20:31 +00:00
Hal Finkel
d151389bd1 [PPC] Fix the scheduling of CR logicals on the P7
CR logicals (crand, crxor, etc.) on the P7 need to be in the first slot of each
dispatch group. The old itinerary entry was just wrong (but has not mattered
because we don't generate these instructions).

This will matter when, in an upcoming commit, we start generating these
instructions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198359 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-02 21:38:26 +00:00
Hal Finkel
f0c1388dd1 Improve instruction scheduling for the PPC POWER7
Aside from a few minor latency corrections, the major change here is a new
hazard recognizer which focuses on better dispatch-group formation on the
POWER7. As with the PPC970's hazard recognizer, the most important thing it
does is avoid load-after-store hazards within the same dispatch group. It uses
the POWER7's special dispatch-group-terminating nop instruction (instead of
inserting multiple regular nop instructions). This new hazard recognizer makes
use of the scheduling dependency graph itself, built using AA information, to
robustly detect the possibility of load-after-store hazards.

significant test-suite performance changes (the error bars are 99.5% confidence
intervals based on 5 test-suite runs both with and without the change --
speedups are negative):

speedups:

MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2
	-0.55171% +/- 0.333168%

MultiSource/Benchmarks/TSVC/CrossingThresholds-dbl/CrossingThresholds-dbl
	-17.5576% +/- 14.598%

MultiSource/Benchmarks/TSVC/Reductions-dbl/Reductions-dbl
	-29.5708% +/- 7.09058%

MultiSource/Benchmarks/TSVC/Reductions-flt/Reductions-flt
	-34.9471% +/- 11.4391%

SingleSource/Benchmarks/BenchmarkGame/puzzle
	-25.1347% +/- 11.0104%

SingleSource/Benchmarks/Misc/flops-8
	-17.7297% +/- 9.79061%

SingleSource/Benchmarks/Shootout-C++/ary3
	-35.5018% +/- 23.9458%

SingleSource/Regression/C/uint64_to_float
	-56.3165% +/- 25.4234%

SingleSource/UnitTests/Vectorizer/gcc-loops
	-18.5309% +/- 6.8496%

regressions:

MultiSource/Benchmarks/ASCI_Purple/SMG2000/smg2000
	18.351% +/- 12.156%

SingleSource/Benchmarks/Shootout-C++/methcall
	27.3086% +/- 14.4733%

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197099 91177308-0d34-0410-b5e6-96231b3b80d8
2013-12-12 00:19:11 +00:00
Hal Finkel
15c773b6f2 Add a scheduling model (with itinerary) for the PPC POWER7
This adds a scheduling model for the POWER7 (P7) core, and enables the
machine-instruction scheduler when targeting the P7. Scheduling for the P7,
like earlier ooo PPC cores, requires considering both dispatch group hazards,
and functional unit resources and latencies. These are both modeled in a
combined itinerary. Dispatch group formation is still handled by the post-RA
scheduler (which still needs to be updated for the P7, but nevertheless does a
pretty good job).

One interesting aspect of this change is that I've also enabled to use of AA
duing CodeGen for the P7 (just as it is for the embedded cores). The benchmark
results seem to support this decision (see below), and while this is normally
useful for in-order cores, and not for ooo cores like the P7, I think that the
dispatch slot hazards are enough like in-order resources to make the AA useful.

Test suite significant performance differences (where negative is a speedup,
and positive is a regression) vs. the current situation:

MultiSource/Benchmarks/BitBench/drop3/drop3
  with AA: N/A
  without AA: -28.7614% +/- 19.8356%
(significantly against AA)

MultiSource/Benchmarks/FreeBench/neural/neural
  with AA: -17.7406% +/- 11.2712%
  without AA: N/A
(significantly in favor of AA)

MultiSource/Benchmarks/SciMark2-C/scimark2
  with AA: -11.2079% +/- 1.80543%
  without AA: -11.3263% +/- 2.79651%

MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt
  with AA: -41.8649% +/- 17.0053%
  without AA: -34.5256% +/- 23.7072%

MultiSource/Benchmarks/mafft/pairlocalalign
  with AA: 25.3016% +/- 17.8614%
  without AA: 38.6629% +/- 14.9391%
(significantly in favor of AA)

MultiSource/Benchmarks/sim/sim
  with AA: N/A
  without AA: 13.4844% +/- 7.18195%
(significantly in favor of AA)

SingleSource/Benchmarks/BenchmarkGame/Large/fasta
  with AA: 15.0664% +/- 6.70216%
  without AA: 12.7747% +/- 8.43043%

SingleSource/Benchmarks/BenchmarkGame/puzzle
  with AA: 82.2713% +/- 26.3567%
  without AA: 75.7525% +/- 41.1842%

SingleSource/Benchmarks/Misc/flops-2
  with AA: -37.1621% +/- 20.7964%
  without AA: -35.2342% +/- 20.2999%
(significantly in favor of AA)

These are 99.5% confidence intervals from 5 runs per configuration. Regarding
the choice to turn on AA during CodeGen, of these results, four seem
significantly in favor of using AA, and one seems significantly against. I'm
not making this decision based on these numbers alone, but these results
seem consistent with results I have from other tests, and so I think that, on
balance, using AA is a win.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195981 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-30 20:55:12 +00:00