Given IR like:
%bit = and %val, #imm-with-1-bit-set
%tst = icmp %bit, 0
br i1 %tst, label %true, label %false
some targets can emit just a single instruction (tbz/tbnz in the
AArch64 case). However, with ISel acting at the basic-block level, all
three instructions need to be together for this to be possible.
This adds another transformation to CodeGenPrep to expose these
opportunities, if targets opt in via the hook.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205086 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases it is possible for CGP to attempt to reuse a base address from
another basic block. In those cases we have to be sure that all the address
math was either done at the same bit width, or that none of it overflowed
before it was extended.
Patch by Louis Gerbarg <lgg@apple.com>
rdar://16307442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204833 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This helps the instruction selector to lower an i64 * i64 -> i128
multiplication into a single instruction on targets which support it.
This is an update of D2973 which was reverted because of a bug reported
as PR19084.
Reviewers: t.p.northover, chapuni
Reviewed By: t.p.northover
CC: llvm-commits, alex, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D3021
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203797 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
This helps the instruction selector to lower an i64 * i64 -> i128
multiplication into a single instruction on targets which support it.
Patch by Manuel Jacob.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203230 91177308-0d34-0410-b5e6-96231b3b80d8
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.
Ironically, the unittest is already in the right library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202824 91177308-0d34-0410-b5e6-96231b3b80d8
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202821 91177308-0d34-0410-b5e6-96231b3b80d8
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202815 91177308-0d34-0410-b5e6-96231b3b80d8
The API expects an ISD opcode, not an IR opcode.
Fixes a regression for R600.
Related to <rdar://problem/15519855>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201923 91177308-0d34-0410-b5e6-96231b3b80d8
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.
Move CodeGenPrepare into libLLVMCodeGen to avoid that.
Follow-up of <rdar://problem/15519855>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201912 91177308-0d34-0410-b5e6-96231b3b80d8