In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224985 91177308-0d34-0410-b5e6-96231b3b80d8
Nothing particularly interesting, just adding infrastructure for use by in tree users and out of tree users.
Note: These were extracted out of a working frontend, but they have not been well tested in isolation.
Differential Revision: http://reviews.llvm.org/D6807
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224981 91177308-0d34-0410-b5e6-96231b3b80d8
It looks like the original intent was to check which symbols were created.
With macho-dump the sections were being checked just to match which symbol
was in which section.
llvm-objdump prints the section a symbol is in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224980 91177308-0d34-0410-b5e6-96231b3b80d8
These are simply a collection of tests intended to show that information about the contents of gc references in the heap is lost at a statepoint. I've tried to write them so that they don't disallow correct transformations, while still being fairly easy to understand.
p.s. Ideas for additional tests are welcome.
Differential Revision: http://reviews.llvm.org/D6491
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224971 91177308-0d34-0410-b5e6-96231b3b80d8
This change implements four basic optimizations:
If a relocated value isn't used, it doesn't need to be relocated.
If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
If the value being relocated is undef, the relocation is meaningless.
If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)
I outlined other planned work in comments.
Differential Revision: http://reviews.llvm.org/D6600
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224968 91177308-0d34-0410-b5e6-96231b3b80d8
In LICM, we have a check for an instruction which is guaranteed to execute and thus can't introduce any new faults if moved to the preheader. To handle a function which might unconditionally throw when first called, we check for any potentially throwing call in the loop and give up.
This is unfortunate when the potentially throwing condition is down a rare path. It prevents essentially all LICM of potentially faulting instructions where the faulting condition is checked outside the loop. It also greatly diminishes the utility of loop unswitching since control dependent instructions - which are now likely in the loops header block - will not be lifted by subsequent LICM runs.
define void @nothrow_header(i64 %x, i64 %y, i1 %cond) {
; CHECK-LABEL: nothrow_header
; CHECK-LABEL: entry
; CHECK: %div = udiv i64 %x, %y
; CHECK-LABEL: loop
; CHECK: call void @use(i64 %div)
entry:
br label %loop
loop: ; preds = %entry, %for.inc
%div = udiv i64 %x, %y
br i1 %cond, label %loop-if, label %exit
loop-if:
call void @use(i64 %div)
br label %loop
exit:
ret void
}
The current patch really only helps with non-memory instructions (i.e. divs, etc..) since the maythrow call down the rare path will be considered to alias an otherwise hoistable load. The one exception is that it does kick in for loads which are known to be invariant without regard to other possible stores, i.e. those marked with either !invarant.load metadata of tbaa 'is constant memory' metadata.
Differential Revision: http://reviews.llvm.org/D6725
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224965 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This in turn allows us to use #includes with cgo that rely on CMake
provided include directories which is particularly useful for handling
generated headers that aren't reasonable to put in an "installable"
location.
Differential Revision: http://reviews.llvm.org/D6798
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224962 91177308-0d34-0410-b5e6-96231b3b80d8
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen. This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.
We really should introduce a hook to control this property on a per target per address space basis. We may be loosing valuable optimizations in some address spaces by being too conservative.
Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224961 91177308-0d34-0410-b5e6-96231b3b80d8
a CLANG_LIBDIR_SUFFIX variable. This is necessary before I can add
support for using that variable to CMake and the C++ code in Clang, and
the autoconf build system does all substitutions in the LLVM tree.
As mentioned before, I'm not planning to add actual multilib support to
the autoconf build, just enough stubs for it to keep playing nicely with
the CMake build once that one has support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224922 91177308-0d34-0410-b5e6-96231b3b80d8
For this to work, we have to encode it in the build variables and use it
from llvm-config.cpp. I've tried to do this reasonably cleanly, but the
code for llvm-config.cpp is pretty strange. However, with this,
llvm-config stops giving the wrong answer when using LLVM_LIBDIR_SUFFIX.
Note that the configure+make build just sets this to an empty string as
that build system has zero support for multilib of any form. I'm not
planning to add support there either, but this should leave a path for
anyone that wanted to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224921 91177308-0d34-0410-b5e6-96231b3b80d8
that is used by other projects to build against LLVM. This will allow
subsequent patches to them to use LLVM_LIBDIR_SUFFIX, both when built as
part of the larger LLVM build an as part of a standalone build against
an installed set of LLVM libraries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224920 91177308-0d34-0410-b5e6-96231b3b80d8
*numerous* places where it was missing in the CMake build. The primary
change here is that the suffix is now actually used for all of the lib
directories in the LLVM project's CMake. The various subprojects still
need similar treatment.
This is the first of a series of commits to try to make LLVM's cmake
effective in a multilib Linux installation. I don't think many people
are seriously using this variable so I'm hoping the fallout will be
minimal. A somewhat unfortunate consequence of the nature of these
commits is that until I land all of them, they will in part make the
brokenness of our multilib support more apparant. At the end, things
should actually work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224919 91177308-0d34-0410-b5e6-96231b3b80d8
The else case ResultReg was not checked for validity.
To my surprise, this case was not hit in any of the
existing test cases. This includes a new test cases
that tests this path.
Also drop the `target triple` declaration from the
original test as suggested by H.J. Lu, because
apparently with it the test won't be run on Linux
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224901 91177308-0d34-0410-b5e6-96231b3b80d8
If the control flow is modelling an if-statement where the only instruction in
the 'then' basic block (excluding the terminator) is a call to cttz/ctlz,
CodeGenPrepare can try to speculate the cttz/ctlz call and simplify the control
flow graph.
Example:
\code
entry:
%cmp = icmp eq i64 %val, 0
br i1 %cmp, label %end.bb, label %then.bb
then.bb:
%c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true)
br label %end.bb
end.bb:
%cond = phi i64 [ %c, %then.bb ], [ 64, %entry]
\code
In this example, basic block %then.bb is taken if value %val is not zero.
Also, the phi node in %end.bb would propagate the size-of in bits of %val
only if %val is equal to zero.
With this patch, CodeGenPrepare will try to hoist the call to cttz from %then.bb
into basic block %entry only if cttz is cheap to speculate for the target.
Added two new hooks in TargetLowering.h to let targets customize the behavior
(i.e. decide whether it is cheap or not to speculate calls to cttz/ctlz). The
two new methods are 'isCheapToSpeculateCtlz' and 'isCheapToSpeculateCttz'.
By default, both methods return 'false'.
On X86, method 'isCheapToSpeculateCtlz' returns true only if the target has
LZCNT. Method 'isCheapToSpeculateCttz' only returns true if the target has BMI.
Differential Revision: http://reviews.llvm.org/D6728
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224899 91177308-0d34-0410-b5e6-96231b3b80d8
Masked vector intrinsics are a part of common LLVM IR, but they are really supported on AVX2 and AVX-512 targets. I added a code that translates masked intrinsic for all other targets. The masked vector intrinsic is converted to a chain of scalar operations inside conditional basic blocks.
http://reviews.llvm.org/D6436
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224897 91177308-0d34-0410-b5e6-96231b3b80d8
Determining the address of a TLS variable results in a function call in
certain TLS models. This means that a simple ICmpInst might actually
result in invalidating the CTR register.
In such cases, do not attempt to rely on the CTR register for loop
optimization purposes.
This fixes PR22034.
Differential Revision: http://reviews.llvm.org/D6786
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224890 91177308-0d34-0410-b5e6-96231b3b80d8