Before 3.0, I'd like to add a mechanism for automatically loading a set of plugins from a config file. API suggestions welcome...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137717 91177308-0d34-0410-b5e6-96231b3b80d8
Allow a target assembly parser to do context sensitive constraint checking
on a potential instruction match. This will be used, for example, to handle
Thumb2 IT block parsing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137675 91177308-0d34-0410-b5e6-96231b3b80d8
This caused a race condition where a thread calls ~LLVMContextImpl which calls
Module::dropAllReferences which calls begin() on an empty ilist that would
create the sentinel, which racily accesses the global context.
This can not be fixed by locking inside createSentinel because the lock would
need to be shared with all users of the global context, including those that
reside outside LLVM's own code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137546 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137501 91177308-0d34-0410-b5e6-96231b3b80d8
when checking isNull(), we'd pick off the sentinel bit for the outer
PointerUnion, but would not recursively convert the inner pointerunion to bool,
so if *its* sentinel bit is set, isNull() would incorrectly return false.
No testcase, because someone hit this when they were trying to refactor code
to use PointerUnion3, but they since found a better solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137428 91177308-0d34-0410-b5e6-96231b3b80d8
SCEV unrolling can unroll loops with arbitrary induction variables. It
is a prerequisite for -disable-iv-rewrite performance. It is also
easily handles loops of arbitrary structure including multiple exits
and is generally more robust.
This is under a temporary option to avoid affecting default
behavior for the next couple of weeks. It is needed so that I can
checkin unit tests for updateUnloop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137384 91177308-0d34-0410-b5e6-96231b3b80d8
An algorithm for incrementally updating LoopInfo within a
LoopPassManager. The incremental update should be extremely cheap in
most cases and can be used in places where it's not feasible to
regenerate the entire loop forest.
- "Unloop" is a node in the loop tree whose last backedge has been removed.
- Perform reverse dataflow on the block inside Unloop to propagate the
nearest loop from the block's successors.
- For reducible CFG, each block in unloop is visited exactly
once. This is because unloop no longer has a backedge and blocks
within subloops don't change parents.
- Immediate subloops are summarized by the nearest loop reachable from
their exits or exits within nested subloops.
- At completion the unloop blocks each have a new parent loop, and
each immediate subloop has a new parent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137276 91177308-0d34-0410-b5e6-96231b3b80d8
based on ScalarEvolution without changing the induction variable phis.
This utility is the main tool of IndVarSimplifyPass, but the pass also
restructures induction variables in strange ways that are sensitive to
pass ordering. This provides a way for other loop passes to simplify
new uses of induction variables created during transformation. The
utility may be used by any pass that preserves ScalarEvolution. Soon
LoopUnroll will use it.
The net effect in this checkin is to cleanup the IndVarSimplify pass
by factoring out the SimplifyIndVar algorithm into a standalone utility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137197 91177308-0d34-0410-b5e6-96231b3b80d8
These are not individual bug fixes. I had to rewrite a good chunk of
the unroller to make it sane. I think it was getting lucky on trivial
completely unrolled loops with no early exits. I included some fairly
simple unit tests for partial unrolling. I didn't do much stress
testing, so it may not be perfect, but should be usable now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137190 91177308-0d34-0410-b5e6-96231b3b80d8
This function doesn't have anything to do with spill weights, and MRI
already has functions for manipulating the register class of a virtual
register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137123 91177308-0d34-0410-b5e6-96231b3b80d8
These the methods are target-independent since they simply scan the
memory operands. They can live in TargetInstrInfoImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137063 91177308-0d34-0410-b5e6-96231b3b80d8
inlined variable, based on the discussion in PR10542.
This explodes the runtime of several passes down the pipeline due to
a large number of "copies" remaining live across a large function. This
only shows up with both debug and opt, but when it does it creates
a many-minute compile when self-hosting LLVM+Clang. There are several
other cases that show these types of regressions.
All of this is tracked in PR10542, and progress is being made on fixing
the issue. Once its addressed, the re-instated, but until then this
restores the performance for self-hosting and other opt+debug builds.
Devang, let me know if this causes any trouble, or impedes fixing it in
any way, and thanks for working on this!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136953 91177308-0d34-0410-b5e6-96231b3b80d8