[mips] Remove MipsCC::analyzeCallOperands in favour of CCState::AnalyzeCallOperands. NFC
Summary:
In addition to the usual f128 workaround, it was also necessary to provide
a means of accessing ArgListEntry::IsFixed.
Reviewers: theraven, vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6111
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_35@223048 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CustomCallingConv is simply a CallingConv that tablegen should not generate the
implementation for. It allows regular CallingConv's to delegate to these custom
functions. This is (currently) necessary for Mips and we cannot use CCCustom
without having to adapt to the different API that CCCustom uses.
This brings us a bit closer to being able to remove
MipsCC::analyzeCallOperands and MipsCC::analyzeFormalArguments in favour of
the common implementation.
No functional change to the targets.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: vmedic, llvm-commits
Differential Revision: http://reviews.llvm.org/D5965
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_35@223031 91177308-0d34-0410-b5e6-96231b3b80d8
[mips] Add CCValAssign::[ASZ]ExtUpper and CCPromoteToUpperBitsInType and handle struct's correctly on big-endian N32/N64 return values.
Summary:
The N32/N64 ABI's require that structs passed in registers are laid out
such that spilling the register with 'sd' places the struct at the lowest
address. For little endian this is trivial but for big-endian it requires
that structs are shifted into the upper bits of the register.
We also require that structs passed in registers have the 'inreg'
attribute for big-endian N32/N64 to work correctly. This is because the
tablegen-erated calling convention implementation only has access to the
lowered form of struct arguments (one or more integers of up to 64-bits
each) and is unable to determine the original type.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5286
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_35@223018 91177308-0d34-0410-b5e6-96231b3b80d8
------------------------------------------------------------------------
r214519 | rafael | 2014-08-01 07:57:05 -0700 (Fri, 01 Aug 2014) | 3 lines
Remove lto_codegen_set_attr.
It was never exported, so no functionality change.
------------------------------------------------------------------------
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_35@214682 91177308-0d34-0410-b5e6-96231b3b80d8
As it turns out, the capture tracker named CaptureBefore used by AA, and now
available via the PointerMayBeCapturedBefore function, would have been
more-aptly named CapturedBeforeOrAt, because it considers captures at the
instruction provided. This is not always what one wants, and it is difficult to
get the strictly-before behavior given only the current interface. This adds an
additional parameter which controls whether or not you want to include
captures at the provided instruction. The default is not to include the
instruction provided, so that 'Before' matches its name.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213582 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build. I'll reply on the list in a moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213562 91177308-0d34-0410-b5e6-96231b3b80d8
createBinary documented that it destroyed the parameter in error cases,
though by observation it does not. By passing the unique_ptr by value
rather than lvalue reference, callers are now explicit about passing
ownership and the function implements the documented contract. Remove
the explicit documentation, since now the behavior cannot be anything
other than what was documented, so it's redundant.
Also drops a unique_ptr::release in llvm-nm that was always run on a
null unique_ptr anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213557 91177308-0d34-0410-b5e6-96231b3b80d8
There were two generally-useful CaptureTracker classes defined in LLVM: the
simple tracker defined in CaptureTracking (and made available via the
PointerMayBeCaptured utility function), and the CapturesBefore tracker
available only inside of AA. This change moves the CapturesBefore tracker into
CaptureTracking, generalizes it slightly (by adding a ReturnCaptures
parameter), and makes it generally available via a PointerMayBeCapturedBefore
utility function.
This logic will be needed, for example, to perform noalias function parameter
attribute inference.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213519 91177308-0d34-0410-b5e6-96231b3b80d8
The ability to identify function locals will exist outside of BasicAA (for
example, logic for inferring noalias function arguments will need this), so
make this concept generally accessible without code duplication.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213514 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes function 'CommuteVectorShuffle' from X86ISelLowering.cpp
and moves its logic into SelectionDAG.cpp as method 'getCommutedVectorShuffles'.
This refactoring is in preperation of an upcoming change to the DAGCombiner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213503 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables the new ELFv2 ABI in the runtime dynamic loader.
The loader has to implement the following features:
- In the ELFv2 ABI, do not look up a function descriptor in .opd, but
instead use the local entry point when resolving a direct call.
- Update the TOC restore code to use the new TOC slot linkage area
offset.
- Create PLT stubs appropriate for the ELFv2 ABI.
Note that this patch also adds common-code changes. These are necessary
because the loader must check the newly added ELF flags: the e_flags
header bits encoding the ABI version, and the st_other symbol table
entry bits encoding the local entry point offset. There is currently
no way to access these, so I've added ObjectFile::getPlatformFlags and
SymbolRef::getOther accessors.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213491 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed in a previous checking to support the .localentry
directive on PowerPC, we need to inspect the actual target symbol
in needsRelocateWithSymbol to make the appropriate decision based
on that symbol's st_other bits.
Currently, needsRelocateWithSymbol does not get the target symbol.
However, it is directly available to its sole caller. This patch
therefore simply extends the needsRelocateWithSymbol by a new
parameter "const MCSymbolData &SD", passes in the target symbol,
and updates all derived implementations.
In particular, in the PowerPC implementation, this patch removes
the FIXME added by the previous checkin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213487 91177308-0d34-0410-b5e6-96231b3b80d8
A second binutils feature needed to support ELFv2 is the .localentry
directive. In the ELFv2 ABI, functions may have two entry points:
one for calling the routine locally via "bl", and one for calling the
function via function pointer (either at the source level, or implicitly
via a PLT stub for global calls). The two entry points share a single
ELF symbol, where the ELF symbol address identifies the global entry
point address, while the local entry point is found by adding a delta
offset to the symbol address. That offset is encoded into three
platform-specific bits of the ELF symbol st_other field.
The .localentry directive instructs the assembler to set those fields
to encode a particular offset. This is typically used by a function
prologue sequence like this:
func:
addis r2, r12, (.TOC.-func)@ha
addi r2, r2, (.TOC.-func)@l
.localentry func, .-func
Note that according to the ABI, when calling the global entry point,
r12 must be set to point the global entry point address itself; while
when calling the local entry point, r2 must be set to point to the TOC
base. The two instructions between the global and local entry point in
the above example translate the first requirement into the second.
This patch implements support in the PowerPC MC streamers to emit the
.localentry directive (both into assembler and ELF object output), as
well as support in the assembler parser to parse that directive.
In addition, there is another change required in MC fixup/relocation
handling to properly deal with relocations targeting function symbols
with two entry points: When the target function is known local, the MC
layer would immediately handle the fixup by inserting the target
address -- this is wrong, since the call may need to go to the local
entry point instead. The GNU assembler handles this case by *not*
directly resolving fixups targeting functions with two entry points,
but always emits the relocation and relies on the linker to handle
this case correctly. This patch changes LLVM MC to do the same (this
is done via the processFixupValue routine).
Similarly, there are cases where the assembler would normally emit a
relocation, but "simplify" it to a relocation targeting a *section*
instead of the actual symbol. For the same reason as above, this
may be wrong when the target symbol has two entry points. The GNU
assembler again handles this case by not performing this simplification
in that case, but leaving the relocation targeting the full symbol,
which is then resolved by the linker. This patch changes LLVM MC
to do the same (via the needsRelocateWithSymbol routine).
NOTE: The method used in this patch is overly pessimistic, since the
needsRelocateWithSymbol routine currently does not have access to the
actual target symbol, and thus must always assume that it might have
two entry points. This will be improved upon by a follow-on patch
that modifies common code to pass the target symbol when calling
needsRelocateWithSymbol.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213485 91177308-0d34-0410-b5e6-96231b3b80d8
ELFv2 binaries are marked by a bit in the ELF header e_flags field.
A new assembler directive .abiversion can be used to set that flag.
This patch implements support in the PowerPC MC streamers to emit the
.abiversion directive (both into assembler and ELF binary output),
as well as support in the assembler parser to parse the .abiversion
directive.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213484 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213474 91177308-0d34-0410-b5e6-96231b3b80d8
Also removes an unnecessary '.release()' that should've been a std::move
anyway. (I'm on a hunt for '.release()' calls)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213464 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an optional parameter to the EmitSymbolValue method in MCStreamer to
permit emitting a symbol value as a section relative value. This is to cover
the use in MCDwarf which should not really know about how to emit a section
relative value for a given target.
This addresses post-review comments from Eric Christopher in SVN r213275.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213463 91177308-0d34-0410-b5e6-96231b3b80d8
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.
Patch by Justin Hibbits!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213427 91177308-0d34-0410-b5e6-96231b3b80d8
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213396 91177308-0d34-0410-b5e6-96231b3b80d8
On AArch64 the pseudo instruction ldr <reg>, =... supports both
32-bit and 64-bit constants. Add support for 64 bit constants for
the pools to support the pseudo instruction fully.
Changes the AArch64 ldr-pseudo tests to use 32-bit registers and
adds tests with 64-bit registers.
Patch by Janne Grunau!
Differential Revision: http://reviews.llvm.org/D4279
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213387 91177308-0d34-0410-b5e6-96231b3b80d8
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213385 91177308-0d34-0410-b5e6-96231b3b80d8
This is a prerequisite for checking for 'mti' and 'img' in a consistent way in
clang. Previously 'img' could use Triple::getVendor() but 'mti' could only use
Triple::getVendorName().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213381 91177308-0d34-0410-b5e6-96231b3b80d8
Actual support for softening f16 operations is still limited, and can be added
when it's needed. But Soften is much closer to being a useful thing to try
than keeping it Legal when no registers can actually hold such values.
Longer term, we probably want something between Soften and Promote semantics
for most targets, it'll be more efficient to promote the 4 basic operations to
f32 than libcall them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213372 91177308-0d34-0410-b5e6-96231b3b80d8
Re-commit of a patch to rework the triple parsing on ARM to a more sane
model.
Patch by Gabor Ballabas.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213367 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the only kind of integer IR attributes that we have are alignment
attributes, and so the attribute kind that takes an integer parameter is called
AlignAttr, but that will change (we'll soon be adding a dereferenceable
attribute that also takes an integer value). Accordingly, rename AlignAttribute
to IntAttribute (class names, enums, etc.).
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213352 91177308-0d34-0410-b5e6-96231b3b80d8
Clang tries to check the clobber list but doesn't list segment registers in its
x86 register list. This fixes PR20343.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213303 91177308-0d34-0410-b5e6-96231b3b80d8
This optional dependency on the udis86 library was added some time back to aid
JIT development, but doesn't make much sense to link into LLVM binaries these
days.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213300 91177308-0d34-0410-b5e6-96231b3b80d8
This also uses TSFlags to mark machine instructions that are surface/texture
accesses, as well as the vector width for surface operations. This is used
to simplify some of the switch statements that need to detect surface/texture
instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213256 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we asserted on this code. Currently compiler-rt doesn't
actually implement any of these new libcalls, but external help is
pretty much the only viable option for LLVM.
I've followed the much more generic "__truncST2" naming, as opposed to
the odd name for f32 -> f16 truncation. This can obviously be changed
later, or overridden by any targets that need to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213252 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213248 91177308-0d34-0410-b5e6-96231b3b80d8
Memory barrier __builtin_arm_[dmb, dsb, isb] intrinsics are required to
implement their corresponding ACLE and MSVC intrinsics.
This patch ports ARM dmb, dsb, isb intrinsic to AArch64.
Differential Revision: http://reviews.llvm.org/D4520
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213247 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the opcode an opaque value (unsigned int) rather than the
enumeration. This permits the use of target specific operands.
Split out the generic type into a MCWinEH header and add a supporting
MCWin64EH::Instruction to abstract out the selection of the opcode and
construction of the actual instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213221 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts, "r213024 - Revert r212572 "improve BasicAA CS-CS queries", it
causes PR20303." with a fix for the bug in pr20303. As it turned out, the
relevant code was both wrong and over-conservative (because, as with the code
it replaced, it would return the overall ModRef mask even if just Ref had been
implied by the argument aliasing results). Hopefully, this correctly fixes both
problems.
Thanks to Nick Lewycky for reducing the test case for pr20303 (which I've
cleaned up a little and added in DSE's test directory). The BasicAA test has
also been updated to check for this error.
Original commit message:
BasicAA contains knowledge of certain intrinsics, such as memcpy and memset,
and uses that information to form more-accurate answers to CallSite vs. Loc
ModRef queries. Unfortunately, it did not use this information when answering
CallSite vs. CallSite queries.
Generically, when an intrinsic takes one or more pointers and the intrinsic is
marked only to read/write from its arguments, the offset/size is unknown. As a
result, the generic code that answers CallSite vs. CallSite (and CallSite vs.
Loc) queries in AA uses UnknownSize when forming Locs from an intrinsic's
arguments. While BasicAA's CallSite vs. Loc override could use more-accurate
size information for some intrinsics, it did not do the same for CallSite vs.
CallSite queries.
This change refactors the intrinsic-specific logic in BasicAA into a generic AA
query function: getArgLocation, which is overridden by BasicAA to supply the
intrinsic-specific knowledge, and used by AA's generic implementation. This
allows the intrinsic-specific knowledge to be used by both CallSite vs. Loc and
CallSite vs. CallSite queries, and simplifies the BasicAA implementation.
Currently, only one function, Mac's memset_pattern16, is handled by BasicAA
(all the rest are intrinsics). As a side-effect of this refactoring, BasicAA's
getModRefBehavior override now also returns OnlyAccessesArgumentPointees for
this function (which is an improvement).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213219 91177308-0d34-0410-b5e6-96231b3b80d8
This was an oversight in the original support. As it is, I stuffed this
bit into the alignment. The alignment is stored in log2 form, so it
doesn't need more than 5 bits, given that Value::MaximumAlignment is 1
<< 29.
Reviewers: nicholas
Differential Revision: http://reviews.llvm.org/D3943
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213118 91177308-0d34-0410-b5e6-96231b3b80d8
This patch modifies the existing DiagnosticInfo system to create a generic base
class that is inherited to produce diagnostic-based warnings. This is used by
the loop vectorizer to trigger a warning when vectorization is forced and
fails. Several tests have been added to verify this behavior.
Reviewed by: Arnold Schwaighofer
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213110 91177308-0d34-0410-b5e6-96231b3b80d8
There is no need to pass on TLI separately to the function. As Eric pointed out
the Target Machine already provides everything we need.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213108 91177308-0d34-0410-b5e6-96231b3b80d8
Refactoring; no functional changes intended
Removed PostRAScheduler bits from subtargets (X86, ARM).
Added PostRAScheduler bit to MCSchedModel class.
This bit is set by a CPU's scheduling model (if it exists).
Removed enablePostRAScheduler() function from TargetSubtargetInfo and subclasses.
Fixed the existing enablePostMachineScheduler() method to use the MCSchedModel (was just returning false!).
Added methods to TargetSubtargetInfo to allow overrides for AntiDepBreakMode, CriticalPathRCs, and OptLevel for PostRAScheduling.
Added enablePostRAScheduler() function to PostRAScheduler class which queries the subtarget for the above values.
Preserved existing scheduler behavior for ARM, MIPS, PPC, and X86:
a. ARM overrides the CPU's postRA settings by enabling postRA for any non-Thumb or Thumb2 subtarget.
b. MIPS overrides the CPU's postRA settings by enabling postRA for everything.
c. PPC overrides the CPU's postRA settings by enabling postRA for everything.
d. X86 is the only target that actually has postRA specified via sched model info.
Differential Revision: http://reviews.llvm.org/D4217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213101 91177308-0d34-0410-b5e6-96231b3b80d8