and expose the necessary hooks in the API directly.
This makes it much cleaner for example to log the usage of a pass
manager from a library. It also makes it more obvious that this
functionality isn't "optional" or "asserts-only" for the pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225841 91177308-0d34-0410-b5e6-96231b3b80d8
template.
This consolidates three copies of nearly the same core logic. It adds
"complexity" to the ModuleAnalysisManager in that it makes it possible
to share a ModuleAnalysisManager across multiple modules... But it does
so by deleting *all of the code*, so I'm OK with that. This will
naturally make fixing bugs in this code much simpler, etc.
The only down side here is that we have to use 'typename' and 'this->'
in various places, and the implementation is lifted into the header.
I'll take that for the code size reduction.
The convenient names are still typedef-ed and used throughout so that
users can largely ignore this aspect of the implementation.
The follow-up change to this will do the exact same refactoring for the
PassManagers. =D
It turns out that the interesting different code is almost entirely in
the adaptors. At the end, that should be essentially all that is left.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225757 91177308-0d34-0410-b5e6-96231b3b80d8
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225562 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r225498 (but leaves r225499, which was a worthy
cleanup).
My plan was to change `DEBUG_LOC` to store the `MDNode` directly rather
than its operands (patch was to go out this morning), but on reflection
it's not clear that it's strictly better. (I had missed that the
current code is unlikely to emit the `MDNode` at all.)
Conflicts:
lib/Bitcode/Reader/BitcodeReader.cpp (due to r225499)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225531 91177308-0d34-0410-b5e6-96231b3b80d8
options other than just -disassemble so that universal files can be used with other
options combined with -arch options.
No functional change to existing options and use. One test case added for the
additional functionality with a universal file an a -arch option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225383 91177308-0d34-0410-b5e6-96231b3b80d8
requiring and invalidating specific analyses. Also make their printed
names match their class names. Writing these out as prose really doesn't
make sense to me any more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225346 91177308-0d34-0410-b5e6-96231b3b80d8
Use this to test that path of invalidation. This test actually shows
redundant invalidation here that is really bad. I'm going to work on
fixing that next, but wanted to commit the test harness now that its all
working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225257 91177308-0d34-0410-b5e6-96231b3b80d8
remove an extra, redundant pass manager wrapping every run.
I had kept seeing these when manually testing, but it was getting really
annoying and was going to cause problems with overly eager invalidation.
The root cause was an overly complex and unnecessary pile of code for
parsing the outer layer of the pass pipeline. We can instead delegate
most of this to the recursive pipeline parsing.
I've added some somewhat more basic and precise tests to catch this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225253 91177308-0d34-0410-b5e6-96231b3b80d8
a specific analysis result.
This is quite handy to test things, and will also likely be very useful
for debugging issues. You could narrow down pass validation failures by
walking these invalidate pass runs up and down the pass pipeline, etc.
I've added support to the pass pipeline parsing to be able to create one
of these for any analysis pass desired.
Just adding this class uncovered one latent bug where the
AnalysisManager CRTP base class had a hard-coded Module type rather than
using IRUnitT.
I've also added tests for invalidation and caching of analyses in
a basic way across all the pass managers. These in turn uncovered two
more bugs where we failed to correctly invalidate an analysis -- its
results were invalidated but the key for re-running the pass was never
cleared and so it was never re-run. Quite nasty. I'm very glad to debug
this here rather than with a full system.
Also, yes, the naming here is horrid. I'm going to update some of the
names to be slightly less awful shortly. But really, I've no "good"
ideas for naming. I'll be satisfied if I can get it to "not bad".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225246 91177308-0d34-0410-b5e6-96231b3b80d8
more verbose than I'd like, but the code really isn't that interesting,
and this still seems vastly simpler than any other solutions I've come
up with. =] Maybe if we get to the 10th IR unit, this will be a problem
in practice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225245 91177308-0d34-0410-b5e6-96231b3b80d8
manager tests to use them and be significantly more comprehensive.
This, naturally, uncovered a bug where the CGSCC pass manager wasn't
printing analyses when they were run.
The only remaining core manipulator is I think an invalidate pass
similar to the require pass. That'll be next. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225240 91177308-0d34-0410-b5e6-96231b3b80d8
simplify things. This will become more important as I add no-op analyses
that want to re-use the logic we already have for analyses in the
registry. For now, no functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225238 91177308-0d34-0410-b5e6-96231b3b80d8
a normal interface for it in Passes.h.
This gives us essentially a single interface for running pass managers
which are provided from the bottom of the LLVM stack through interfaces
at the top of the LLVM stack that populate them with all of the
different analyses available throughout. It also means there is a single
blob of code that needs to include all of the pass headers and needs to
deal with the registry of passes and parsing names.
No functionality changed intended, should just be cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225237 91177308-0d34-0410-b5e6-96231b3b80d8
is a no-op other than requiring some analysis results be available.
This can be used in real pass pipelines to force the usually lazy
analysis running to eagerly compute something at a specific point, and
it can be used to test the pass manager infrastructure (my primary use
at the moment).
I've also added bit of pipeline parsing magic to support generating
these directly from the opt command so that you can directly use these
when debugging your analysis. The syntax is:
require<analysis-name>
This can be used at any level of the pass manager. For example:
cgscc(function(require<my-analysis>,no-op-function))
This would produce a no-op function pass requiring my-analysis, followed
by a fully no-op function pass, both of these in a function pass manager
which is nested inside of a bottom-up CGSCC pass manager which is in the
top-level (implicit) module pass manager.
I have zero attachment to the particular syntax I'm using here. Consider
it a straw man for use while I'm testing and fleshing things out.
Suggestions for better syntax welcome, and I'll update everything based
on any consensus that develops.
I've used this new functionality to more directly test the analysis
printing rather than relying on the cgscc pass manager running an
analysis for me. This is still minimally tested because I need to have
analyses to run first! ;] That patch is next, but wanted to keep this
one separate for easier review and discussion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225236 91177308-0d34-0410-b5e6-96231b3b80d8
This object is meant to own the ObjectFiles and their underlying
MemoryBuffer. It is basically the equivalent of an OwningBinary
except that it efficiently handles Archives. It is optimized for
efficiently providing mappings of members of the same archive when
they are opened successively (which is standard in Darwin debug
maps, objects from the same archive will be contiguous).
Of course, the BinaryHolder will also be used by the DWARF linker
once it is commited, but for now only the debug map parser uses it.
With this change, you can run llvm-dsymutil on your Darwin debug build
of clang and get a complete debug map for it.
Differential Revision: http://reviews.llvm.org/D6690
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225207 91177308-0d34-0410-b5e6-96231b3b80d8
units.
This was debated back and forth a bunch, but using references is now
clearly cleaner. Of all the code written using pointers thus far, in
only one place did it really make more sense to have a pointer. In most
cases, this just removes immediate dereferencing from the code. I think
it is much better to get errors on null IR units earlier, potentially
at compile time, than to delay it.
Most notably, the legacy pass manager uses references for its routines
and so as more and more code works with both, the use of pointers was
likely to become really annoying. I noticed this when I ported the
domtree analysis over and wrote the entire thing with references only to
have it fail to compile. =/ It seemed better to switch now than to
delay. We can, of course, revisit this is we learn that references are
really problematic in the API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225145 91177308-0d34-0410-b5e6-96231b3b80d8
The required functionality has been there for some time, but I never
managed to actually wire it into the command line registry of passes.
Let's do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225144 91177308-0d34-0410-b5e6-96231b3b80d8
This enhances llvm-readobj to print out the COFF export table, similar to the
-coff-import option. This is useful for testing in lld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225120 91177308-0d34-0410-b5e6-96231b3b80d8
For this to work, we have to encode it in the build variables and use it
from llvm-config.cpp. I've tried to do this reasonably cleanly, but the
code for llvm-config.cpp is pretty strange. However, with this,
llvm-config stops giving the wrong answer when using LLVM_LIBDIR_SUFFIX.
Note that the configure+make build just sets this to an empty string as
that build system has zero support for multilib of any form. I'm not
planning to add support there either, but this should leave a path for
anyone that wanted to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224921 91177308-0d34-0410-b5e6-96231b3b80d8
*numerous* places where it was missing in the CMake build. The primary
change here is that the suffix is now actually used for all of the lib
directories in the LLVM project's CMake. The various subprojects still
need similar treatment.
This is the first of a series of commits to try to make LLVM's cmake
effective in a multilib Linux installation. I don't think many people
are seriously using this variable so I'm hoping the fallout will be
minimal. A somewhat unfortunate consequence of the nature of these
commits is that until I land all of them, they will in part make the
brokenness of our multilib support more apparant. At the end, things
should actually work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224919 91177308-0d34-0410-b5e6-96231b3b80d8
Export symbols in libLTO.dylib for the local context-related functions
added in r221733 (`LTO_API_VERSION=11`)... and add the missing
definition for `lto_codegen_create_in_local_context()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224567 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: We should only have llvm-c-test use libLLVM if the library is built with the default set of components or if LLVM_DYLIB_COMPONENTS includes all the LLVM_LINK_COMPONENTS required for llvm-c-test. Making libLLVM always used causes build failures if libLLVM doesn't include all
Reviewers: chapuni, ributzka
Reviewed By: ributzka
Subscribers: ributzka, llvm-commits
Differential Revision: http://reviews.llvm.org/D6668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224541 91177308-0d34-0410-b5e6-96231b3b80d8
Also corrected the name of the load command to not end in an ’S’ as well as corrected
the name of the MachO::linker_option_command struct and other places that had the
word option as plural which did not match the Mac OS X headers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224485 91177308-0d34-0410-b5e6-96231b3b80d8
Add coverage in `llvm-lto` for the API exposed by libLTO to create
modules in local contexts.
The goal here isn't to test the symbol-related API extensively, just to
confirm that these modules work at all. (I'll be shifting code around
soon that should be NFC and I realized there was no test coverage.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224408 91177308-0d34-0410-b5e6-96231b3b80d8