This fixes spurious warnings in llvm-link about the datalayout not matching.
Thanks to Zalman Stern for reporting the bug!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202276 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have any test with more than 6 address spaces, so a DenseMap is
probably not the correct answer.
An unsorted array would also be OK, but we have to sort it for printing anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202275 91177308-0d34-0410-b5e6-96231b3b80d8
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202204 91177308-0d34-0410-b5e6-96231b3b80d8
No tool does this currently, but as everything else in a module we should be
able to change its DataLayout.
Most of the fix is in DataLayout to make sure it can be reset properly.
The test uses Module::setDataLayout since the fact that we mutate a DataLayout
is an implementation detail. The module could hold a OwningPtr<DataLayout> and
the DataLayout itself could be immutable.
Thanks to Philip Reames for pushing me in the right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202198 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198438 91177308-0d34-0410-b5e6-96231b3b80d8
During the years there have been some attempts at figuring out how to
align byval arguments. A look at the commit log suggests that they
were
* Use the ABI alignment.
* When that was not sufficient for x86-64, I added the 's' specification to
DataLayout.
* When that was not sufficient Evan added the virtual getByValTypeAlignment.
* When even that was not sufficient, we just got the FE to add the alignment
to the byval.
This patch is just a simple cleanup that removes my first attempt at fixing the
problem. I also added an AArch64 implementation of getByValTypeAlignment to
make sure this patch is a nop. I also left the 's' parsing for backward
compatibility.
I will send a short email to llvmdev about the change for anyone maintaining
an out of tree target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198287 91177308-0d34-0410-b5e6-96231b3b80d8
If there are no legal integers, assume 1 byte.
This makes more sense than using the pointer size as
a guess for the maximum GPR width.
It is conceivable to want to use some 64-bit pointers
on a target where 64-bit integers aren't legal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190817 91177308-0d34-0410-b5e6-96231b3b80d8
These were reverted in r167222 along with the rest
of the last different address space pointer size attempt.
These will be used in later commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187223 91177308-0d34-0410-b5e6-96231b3b80d8
The original code used i32, and i64 if legal. This introduced unneeded
casts when they aren't legal, or when the index variable i has another
type. In order of preference: try to use i's type; use the smallest
fitting legal type (using an added DataLayout method); default to i32.
A testcase checks that this works when the index gep operand is i16.
Patch by : Ahmed Bougacha <ahmed.bougacha@gmail.com>
Reviewed by : Duncan
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177712 91177308-0d34-0410-b5e6-96231b3b80d8
header.
This method is called in the hot path for *many* passes, SROA is what
caught my interest. A common pattern is that which branch of the switch
should be taken is known in the callsite and so it is a very good
candidate for inlining and simplification. Moving it into the header
allows the optimizer to fold a lot of boring, repeatitive code in
callers of this routine.
I'm seeing pretty significant speedups in parts of SROA and I suspect
other passes will see similar speedups if they end up working with type
sizes frequently. I've not seen any significant growth of the binaries
as a consequence, but let me know if you see anything suspicious here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177632 91177308-0d34-0410-b5e6-96231b3b80d8
This pass is meant to be immutable, however it holds mutable state to cache StructLayouts.
This method will allow the pass manager to clear the mutable state between runs.
Note that unfortunately it is still necessary to have the destructor, even though it does the
same thing as doFinalization. This is because most TargetMachines embed a DataLayout on which
doFinalization isn't run as its never added to the pass manager.
I also didn't think it was necessary to complication things with a deInit method for which
doFinalization and ~DataLayout both call as there's only one field of mutable state. If we had
more fields to finalize i'd have added this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176877 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8