This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186268 91177308-0d34-0410-b5e6-96231b3b80d8
When SROA was evaluating a mixture of i1 and i8 loads and stores, in
just a particular case, it would tickle a latent bug where we compared
bits to bytes rather than bits to bits. As a consequence of the latent
bug, we would allow integers through which were not byte-size multiples,
a situation the later rewriting code was never intended to handle.
In release builds this could trigger all manner of oddities, but the
reported issue in PR14548 was forming invalid bitcast instructions.
The only downside of this fix is that it makes it more clear that SROA
in its current form is not capable of handling mixed i1 and i8 loads and
stores. Sometimes with the previous code this would work by luck, but
usually it would crash, so I'm not terribly worried. I'll watch the LNT
numbers just to be sure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169719 91177308-0d34-0410-b5e6-96231b3b80d8
smaller integer loads and stores.
The high-level motivation is that the frontend sometimes generates
a single whole-alloca integer load or store during ABI lowering of
splittable allocas. We need to be able to break this apart in order to
see the underlying elements and properly promote them to SSA values. The
hope is that this fixes some performance regressions on x86-32 with the
new SROA pass.
Unfortunately, this causes quite a bit of churn in the test cases, and
bloats some IR that comes out. When we see an alloca that consists soley
of bits and bytes being extracted and re-inserted, we now do some
splitting first, before building widened integer "bucket of bits"
representations. These are always well folded by instcombine however, so
this shouldn't actually result in missed opportunities.
If this splitting of all-integer allocas does cause problems (perhaps
due to smaller SSA values going into the RA), we could potentially go to
some extreme measures to only do this integer splitting trick when there
are non-integer component accesses of an alloca, but discovering this is
quite expensive: it adds yet another complete walk of the recursive use
tree of the alloca.
Either way, I will be watching build bots and LNT bots to see what
fallout there is here. If anyone gets x86-32 numbers before & after this
change, I would be very interested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166662 91177308-0d34-0410-b5e6-96231b3b80d8
Sorry for this being broken so long. =/
As part of this, switch all of the existing tests to be Little Endian,
which is the behavior I was asserting in them anyways! Add in a new
big-endian test that checks the interesting behavior there.
Another part of this is to tighten the rules abotu when we perform the
full-integer promotion. This logic now rejects cases where there fully
promoted integer is a non-multiple-of-8 bitwidth or cases where the
loads or stores touch bits which are in the allocated space of the
alloca but are not loaded or stored when accessing the integer. Sadly,
these aren't really observable today as the rest of the pass will
already ensure the invariants hold. However, the latter situation is
likely to become a potential concern in the future.
Thanks to Benjamin and Duncan for early review of this patch. I'm still
looking into whether there are further endianness issues, please let me
know if anyone sees BE failures persisting past this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165219 91177308-0d34-0410-b5e6-96231b3b80d8