of a precise count. Also, move RRInfo's Partial field into PtrState,
now that it won't increase the size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155513 91177308-0d34-0410-b5e6-96231b3b80d8
These lists exclude invoke unwind edges and loop backedges which
are being ignored. This makes it easier to ignore them
consistently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155500 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit message:
Defer some shl transforms to DAGCombine.
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155362 91177308-0d34-0410-b5e6-96231b3b80d8
While the patch was perfect and defect free, it exposed a really nasty
bug in X86 SelectionDAG that caused an llc crash when compiling lencod.
I'll put the patch back in after fixing the SelectionDAG problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155181 91177308-0d34-0410-b5e6-96231b3b80d8
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155136 91177308-0d34-0410-b5e6-96231b3b80d8
If the loop contains invoke instructions, whose unwind edge escapes the loop,
then don't try to unswitch the loop. Doing so may cause the unwind edge to be
split, which not only is non-trivial but doesn't preserve loop simplify
information.
Fixes PR12573
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154987 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a threshold of 200 IV Users, which is very
conservative but should be sufficient to avoid serious compile time
sink or stack overflow. The llvm test-suite with LTO never exceeds 190
users per loop.
The bug doesn't relate to a specific type of loop. Checking in an
arbitrary giant loop as a unit test would be silly.
Fixes rdar://11262507.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154983 91177308-0d34-0410-b5e6-96231b3b80d8
also fix SimplifyLibCalls to use TLI rather than compile-time conditionals to enable optimizations on floor, ceil, round, rint, and nearbyint
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154960 91177308-0d34-0410-b5e6-96231b3b80d8
When vectorizing pointer types it is important to realize that potential
pairs cannot be connected via the address pointer argument of a load or store.
This is because even after vectorization, the address is still a scalar because
the address of the higher half of the pair is implicit from the address of the
lower half (it need not be, and should not be, explicitly computed).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154735 91177308-0d34-0410-b5e6-96231b3b80d8
As has been suggested by Duncan and others, Early-CSE and GVN should
do similar redundancy elimination, but Early-CSE is much less expensive.
Most of my autovectorization benchmarks show a performance regresion, but
all of these are < 0.1%, and so I think that it is still worth using
the less expensive pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154673 91177308-0d34-0410-b5e6-96231b3b80d8
library return value optimization for phi uses. Even when the
phi itself is not dominated, the specific use may be dominated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154647 91177308-0d34-0410-b5e6-96231b3b80d8
obviously cannot know that this code is present, let alone used. So prevent the
internalize pass from internalizing those global values which code-gen may
insert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154645 91177308-0d34-0410-b5e6-96231b3b80d8
- don't isntrument reads from constant globals.
Saves ~1.5% of instrumented instructions on CPU2006
(counting static instructions, not their execution).
- don't insrument reads from vtable (which is a global constant too).
Saves ~5%.
I did not measure the run-time impact of this,
but it is certainly non-negative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154444 91177308-0d34-0410-b5e6-96231b3b80d8
a write to the same temp follows in the same BB.
Also add stats printing.
On Spec CPU2006 this optimization saves roughly 4% of instrumented reads
(which is 3% of all instrumented accesses):
Writes : 161216
Reads : 446458
Reads-before-write: 18295
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154418 91177308-0d34-0410-b5e6-96231b3b80d8
Take this opportunity to generalize the indirectbr bailout logic for
loop transformations. CFG transformations will never get indirectbr
right, and there's no point trying.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154386 91177308-0d34-0410-b5e6-96231b3b80d8
GEPs, bit casts, and stores reaching it but no other instructions. These
often show up during the iterative processing of the inliner, SROA, and
DCE. Once we hit this point, we can completely remove the alloca. These
were actually showing up in the final, fully optimized code in a bunch
of inliner tests I've been working on, and notably they show up after
LLVM finishes optimizing away all function calls involved in
hash_combine(a, b).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154285 91177308-0d34-0410-b5e6-96231b3b80d8
simplification has been performed. This is a bit less efficient
(requires another ilist walk of the basic blocks) but shouldn't matter
in practice. More importantly, it's just too much work to keep track of
all the various ways the return instructions can be mutated while
simplifying them. This fixes yet another crasher, reported by Daniel
Dunbar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154179 91177308-0d34-0410-b5e6-96231b3b80d8
dead code, including dead return instructions in some cases. Otherwise,
we end up having a bogus poniter to a return instruction that blows up
much further down the road.
It turns out that this pattern is both simpler to code, easier to update
in the face of enhancements to the inliner cleanup, and likely cheaper
given that it won't add dead instructions to the list.
Thanks to John Regehr's numerous test cases for teasing this out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154157 91177308-0d34-0410-b5e6-96231b3b80d8
of the BBVectorizePass without using command line option. As pointed out
by Hal, we can ask the TargetLoweringInfo for the architecture specific
VectorizeConfig to perform vectorizing with architecture specific
information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154096 91177308-0d34-0410-b5e6-96231b3b80d8
BasicBlock in other passes, e.g. we can call vectorizeBasicBlock in the
loop unroll pass right after the loop is unrolled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154089 91177308-0d34-0410-b5e6-96231b3b80d8
LSR can fold three addressing modes into its ICmpZero node:
ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
The first two cases are only used if TLI->isLegalICmpImmediate() likes
the offset.
Make sure the right Offset sign is passed to this method in the second
case. The ARM version is not symmetric.
<rdar://problem/11184260>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154079 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
reducing unroll count, otherwise the reduced unroll count is not taking
the "OptimizeForSize" attribute into account.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154007 91177308-0d34-0410-b5e6-96231b3b80d8
http://llvm.org/bugs/show_bug.cgi?id=12343
We have not trivial way for splitting edges that are goes from indirect branch. We can do it with some tricks, but it should be additionally discussed. And it is still dangerous due to difficulty of indirect branches controlling.
Fix forbids this case for unswitching.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153879 91177308-0d34-0410-b5e6-96231b3b80d8
As a side note, I really dislike array_pod_sort... Do we really still
care about any STL implementations that get this so wrong? Does libc++?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153834 91177308-0d34-0410-b5e6-96231b3b80d8
a single missing character. Somehow, this had gone untested. I've added
tests for returns-twice logic specifically with the always-inliner that
would have caught this, and fixed the bug.
Thanks to Matt for the careful review and spotting this!!! =D
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153832 91177308-0d34-0410-b5e6-96231b3b80d8
the very high overhead of the complex inline cost analysis when all it
wants to do is detect three patterns which must not be inlined. Comment
the code, clean it up, and leave some hints about possible performance
improvements if this ever shows up on a profile.
Moving this off of the (now more expensive) inline cost analysis is
particularly important because we have to run this inliner even at -O0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153814 91177308-0d34-0410-b5e6-96231b3b80d8
interfaces. These methods were used in the old inline cost system where
there was a persistent cache that had to be updated, invalidated, and
cleared. We're now doing more direct computations that don't require
this intricate dance. Even if we resume some level of caching, it would
almost certainly have a simpler and more narrow interface than this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153813 91177308-0d34-0410-b5e6-96231b3b80d8