We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190290 91177308-0d34-0410-b5e6-96231b3b80d8
This is a basic first step towards symbolization of disassembled
instructions. This used to be done using externally provided (C API)
callbacks. This patch introduces:
- the MCSymbolizer class, that mimics the same functions that were used
in the X86 and ARM disassemblers to symbolize immediate operands and
to annotate loads based off PC (for things like c string literals).
- the MCExternalSymbolizer class, which implements the old C API.
- the MCRelocationInfo class, which provides a way for targets to
translate relocations (either object::RelocationRef, or disassembler
C API VariantKinds) to MCExprs.
- the MCObjectSymbolizer class, which does symbolization using what it
finds in an object::ObjectFile. This makes simple symbolization (with
no fancy relocation stuff) work for all object formats!
- x86-64 Mach-O and ELF MCRelocationInfos.
- A basic ARM Mach-O MCRelocationInfo, that provides just enough to
support the C API VariantKinds.
Most of what works in otool (the only user of the old symbolization API
that I know of) for x86-64 symbolic disassembly (-tvV) works, namely:
- symbol references: call _foo; jmp 15 <_foo+50>
- relocations: call _foo-_bar; call _foo-4
- __cf?string: leaq 193(%rip), %rax ## literal pool for "hello"
Stub support is the main missing part (because libObject doesn't know,
among other things, about mach-o indirect symbols).
As for the MCSymbolizer API, instead of relying on the disassemblers
to call the tryAdding* methods, maybe this could be done automagically
using InstrInfo? For instance, even though PC-relative LEAs are used
to get the address of string literals in a typical Mach-O file, a MOV
would be used in an ELF file. And right now, the explicit symbolization
only recognizes PC-relative LEAs. InstrInfo should have already have
most of what is needed to know what to symbolize, so this can
definitely be improved.
I'd also like to remove object::RelocationRef::getValueString (it seems
only used by relocation printing in objdump), as simply printing the
created MCExpr is definitely enough (and cleaner than string concats).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182625 91177308-0d34-0410-b5e6-96231b3b80d8
store this and use it to not emit long nops when the CPU is geode which
doesnt support them.
Fixes PR11212.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164132 91177308-0d34-0410-b5e6-96231b3b80d8
Add the MCRegisterInfo to the factories and constructors.
Patch by Tom Stellard <Tom.Stellard@amd.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156828 91177308-0d34-0410-b5e6-96231b3b80d8
the feature set of v7a. This comes about if the user specifies something like
-arch armv7 -mcpu=cortex-m3. We shouldn't be generating instructions such as
uxtab in this case.
rdar://11318438
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155601 91177308-0d34-0410-b5e6-96231b3b80d8
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134678 91177308-0d34-0410-b5e6-96231b3b80d8