Change the informal convention of DBG_VALUE machine instructions so that
we can express a register-indirect address with an offset of 0.
The old convention was that a DBG_VALUE is a register-indirect value if
the offset (operand 1) is nonzero. The new convention is that a DBG_VALUE
is register-indirect if the first operand is a register and the second
operand is an immediate. For plain register values the combination reg,
reg is used. MachineInstrBuilder::BuildMI knows how to build the new
DBG_VALUES.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185966 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than using the full power of target-specific addressing modes in
DBG_VALUEs with Frame Indicies, simply use Frame Index + Offset. This
reduces the complexity of debug info handling down to two
representations of values (reg+offset and frame index+offset) rather
than three or four.
Ideally we could ensure that frame indicies had been eliminated by the
time we reached an assembly or dwarf generation, but I haven't spent the
time to figure out where the FIs are leaking through into that & whether
there's a good place to convert them. Some FI+offset=>reg+offset
conversion is done (see PrologEpilogInserter, for example) which is
necessary for some SelectionDAG assumptions about registers, I believe,
but it might be possible to make this a more thorough conversion &
ensure there are no remaining FIs no matter how instruction selection
is performed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184066 91177308-0d34-0410-b5e6-96231b3b80d8
register-indirect address with an offset of 0.
It used to be that a DBG_VALUE is a register-indirect value if the offset
(operand 1) is nonzero. The new convention is that a DBG_VALUE is
register-indirect if the first operand is a register and the second
operand is an immediate. For plain registers use the combination reg, reg.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180816 91177308-0d34-0410-b5e6-96231b3b80d8
Remove dead functions: renameRegister
Move private member variables from LDV to Impl
Remove ssp/uwtable from testing case
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175072 91177308-0d34-0410-b5e6-96231b3b80d8
RegisterCoalescer used to depend on LiveDebugVariable. LDV removes DBG_VALUEs
without emitting them at the end.
We fix this by removing LDV from RegisterCoalescer. Also add an assertion to
make sure we call emitDebugValues if DBG_VALUEs are removed at
runOnMachineFunction.
rdar://problem/13183203
Reviewed by Andy & Jakob
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175023 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change, just moved header files.
Targets can inject custom passes between register allocation and
rewriting. This makes it possible to tweak the register allocation
before rewriting, using the full global interference checking available
from LiveRegMatrix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168806 91177308-0d34-0410-b5e6-96231b3b80d8
Based on CR feedback from r162301 and Craig Topper's refactoring in r162347
here are a few other places that could use the same API (& in one instance drop
a Function.h dependency).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162367 91177308-0d34-0410-b5e6-96231b3b80d8
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159312 91177308-0d34-0410-b5e6-96231b3b80d8
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146026 91177308-0d34-0410-b5e6-96231b3b80d8
The old naming scheme (load/use/def/store) can be traced back to an old
linear scan article, but the names don't match how slots are actually
used.
The load and store slots are not needed after the deferred spill code
insertion framework was deleted.
The use and def slots don't make any sense because we are using
half-open intervals as is customary in C code, but the names suggest
closed intervals. In reality, these slots were used to distinguish
early-clobber defs from normal defs.
The new naming scheme also has 4 slots, but the names match how the
slots are really used. This is a purely mechanical renaming, but some
of the code makes a lot more sense now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144503 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible to have multiple DBG_VALUEs for the same variable:
32L TEST32rr %vreg0<kill>, %vreg0, %EFLAGS<imp-def>; GR32:%vreg0
DBG_VALUE 2, 0, !"i"
DBG_VALUE %noreg, %0, !"i"
When that happens, keep the last one instead of the first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136842 91177308-0d34-0410-b5e6-96231b3b80d8
It can happen that a live debug variable is the last use of a sub-register, and
the register allocator will pick a larger register class for the virtual
register. If the allocated register doesn't support the sub-register index,
just use %noreg for the debug variables instead of asserting.
In PR9872, a debug variable ends up in the sub_8bit_hi part of a GR32_ABCD
register. The register is split and one part is inflated to GR32 and assigned
%ESI because there are no more normal uses of sub_8bit_hi.
Since %ESI doesn't have that sub-register, substPhysReg asserted. Now it will
simply insert a %noreg instead, and the debug variable will be marked
unavailable in that range.
We don't currently have a way of saying: !"value" is in bits 8-15 of %ESI, I
don't know if DWARF even supports that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131073 91177308-0d34-0410-b5e6-96231b3b80d8
After a virtual register is split, update any debug user variables that resided
in the old register. This ensures that the LiveDebugVariables are still correct
after register allocation.
This may create DBG_VALUE instructions that place a user variable in a register
in parts of the function and in a stack slot in other parts. DwarfDebug
currently doesn't support that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130998 91177308-0d34-0410-b5e6-96231b3b80d8
This will extend the ranges of debug info variables in registers until they are
clobbered.
Fix 1: Don't mistake DBG_VALUE instructions referring to incoming arguments on
the stack with DBG_VALUE instructions referring to variables in the frame
pointer. This fixes the gdb test-suite failure.
Fix 2: Don't trace through copies to physical registers setting up call
arguments. These registers are call clobbered, and the source register is more
likely to be a callee-saved register that can be extended through the call
instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128114 91177308-0d34-0410-b5e6-96231b3b80d8
Temporarily reverting these to see if we can get llvm-objdump to link. Hopefully this is not the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128097 91177308-0d34-0410-b5e6-96231b3b80d8
These ranges get completely jumbled by the post-ra scheduler, and it is not
really reasonable to expect it to make sense of them.
Instead, teach DwarfDebug to notice when user variables in registers are
clobbered, and terminate the ranges there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128045 91177308-0d34-0410-b5e6-96231b3b80d8
The llvm.dbg.value intrinsic refers to SSA values, not virtual registers, so we
should be able to extend the range of a value by tracking that value through
register copies. This greatly improves the debug value tracking for function
arguments that for some reason are copied to a second virtual register at the
end of the entry block.
We only extend the debug value range where its register is killed. All original
llvm.dbg.value locations are still respected.
Copies from physical registers are ignored. That should not be a problem since
the entry block already adds DBG_VALUE instructions for the virtual registers
holding the function arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127912 91177308-0d34-0410-b5e6-96231b3b80d8
For one, MachineBasicBlock::getFirstTerminator() doesn't understand what is
happening, and it also makes sense to have all control flow run through the
DBG_VALUE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123277 91177308-0d34-0410-b5e6-96231b3b80d8
These functions not longer assert when passed 0, but simply return false instead.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123155 91177308-0d34-0410-b5e6-96231b3b80d8
of using a Location class with the same information.
When making a copy of a MachineOperand that was already stored in a
MachineInstr, it is necessary to clear the parent pointer on the copy. Otherwise
the register use-def lists become inconsistent.
Add MachineOperand::clearParent() to do that. An alternative would be a custom
MachineOperand copy constructor that cleared ParentMI. I didn't want to do that
because of the performance impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123109 91177308-0d34-0410-b5e6-96231b3b80d8
Print virtual registers numbered from 0 instead of the arbitrary
FirstVirtualRegister. The first virtual register is printed as %vreg0.
TRI::NoRegister is printed as %noreg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123107 91177308-0d34-0410-b5e6-96231b3b80d8