editbin.exe and link.exe both accepts /highentropyva option to set this bit, so
doing s/VIRTUAL_ADDRESS/VA/ should make sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200191 91177308-0d34-0410-b5e6-96231b3b80d8
That bit is not documented in the PE/COFF spec published by Microsoft, so we
don't know the official name of it. I named this bit
IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VIRTUAL_ADDRESS because the bit is
reported as "high entropy virtual address" by dumpbin.exe,
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200121 91177308-0d34-0410-b5e6-96231b3b80d8
This change does not affect anything because everybody seems to be using
Object/COFF.h instead. But the definition is not for PE32 but for PE32+,
so fix it anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200038 91177308-0d34-0410-b5e6-96231b3b80d8
The underlying type of all plain enums in MSVC is 'int', even if the
enumerator contains large 32-bit unsigned values or values greater than
UINT_MAX. The only way to get a large or unsigned enum type is to
request it explicitly with the C++11 strong enum types feature.
However, since LLVM isn't C++11 yet, I had to add a conditional
LLVM_ENUM_INT_TYPE to Compiler.h to control its usage.
The motivating true positive for this change is compiling PointerIntPair
with MSVC for win64. The PointerIntMask value is supposed to be pointer
sized value of all ones with some low zeros. Instead, it's truncated to
32-bits! We are only saved later because it is sign extended back in
the AND with int64_t, and we happen to want all ones.
This silences lots of -Wmicrosoft warnings during a clang self-host
targeting Windows.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191241 91177308-0d34-0410-b5e6-96231b3b80d8
This adds additional missing Windows subsystem identifiers to the
IMAGE_SUBSYSTEM enumeration.
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189180 91177308-0d34-0410-b5e6-96231b3b80d8
COFF header is always present both in executable and in object file. PE header
is present only in executable. So the natural way to handle PE/COFF file is
treating COFF is mandatory header and PE is optional. Current data structre
does not allow it, because PE header includes COFF header. Removing COFF
header will simplify the code to handle PE/COFF files.
Reviewers: Bigcheese
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D952
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183788 91177308-0d34-0410-b5e6-96231b3b80d8
ELF with support for:
- File headers
- Section headers + data
- Relocations
- Symbols
- Unwind data (only COFF/Win64)
The output format follows a few rules:
- Values are almost always output one per line (as elf-dump/coff-dump already do). - Many values are translated to something readable (like enum names), with the raw value in parentheses.
- Hex numbers are output in uppercase, prefixed with "0x".
- Flags are sorted alphabetically.
- Lists and groups are always delimited.
Example output:
---------- snip ----------
Sections [
Section {
Index: 1
Name: .text (5)
Type: SHT_PROGBITS (0x1)
Flags [ (0x6)
SHF_ALLOC (0x2)
SHF_EXECINSTR (0x4)
]
Address: 0x0
Offset: 0x40
Size: 33
Link: 0
Info: 0
AddressAlignment: 16
EntrySize: 0
Relocations [
0x6 R_386_32 .rodata.str1.1 0x0
0xB R_386_PC32 puts 0x0
0x12 R_386_32 .rodata.str1.1 0x0
0x17 R_386_PC32 puts 0x0
]
SectionData (
0000: 83EC04C7 04240000 0000E8FC FFFFFFC7 |.....$..........|
0010: 04240600 0000E8FC FFFFFF31 C083C404 |.$.........1....|
0020: C3 |.|
)
}
]
---------- snip ----------
Relocations and symbols can be output standalone or together with the section header as displayed in the example.
This feature set supports all tests in test/MC/COFF and test/MC/ELF (and I suspect all additional tests using elf-dump), making elf-dump and coff-dump deprecated.
Patch by Nico Rieck!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178679 91177308-0d34-0410-b5e6-96231b3b80d8
yaml2obj takes a textual description of an object file in YAML format
and outputs the binary equivalent. This greatly simplifies writing
tests that take binary object files as input.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161205 91177308-0d34-0410-b5e6-96231b3b80d8