so DWARF skeleton CUs can be expression in IR. A skeleton CU is a
(typically empty) DW_TAG_compile_unit that has a DW_AT_(GNU)_dwo_name and
a DW_AT_(GNU)_dwo_id attribute. It is used to refer to external debug info.
This is a prerequisite for clang module debugging as discussed in
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-November/040076.html.
In order to refer to external types stored in split DWARF (dwo) objects,
such as clang modules, we need to emit skeleton CUs, which identify the
dwarf object (i.e., the clang module) by filename (the SplitDebugFilename)
and a hash value, the dwo_id.
This patch only contains the IR changes. The idea is that a CUs with a
non-zero dwo_id field will be emitted together with a DW_AT_GNU_dwo_name
and DW_AT_GNU_dwo_id attribute.
http://reviews.llvm.org/D9488
rdar://problem/20091852
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237949 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Added isLoadableOrStorableType to PointerType.
We were doing some checks in some places, occasionally assert()ing instead
of telling the caller. With this patch, I'm putting all type checking in
the same place for load/store type instructions, and verifying the same
thing every time.
I also added a check for load/store of a function type.
Applied extracted check to Load, Store, and Cmpxcg.
I don't have exhaustive tests for all of these, but all Error() calls in
TypeCheckLoadStoreInst are being tested (in invalid.test).
Reviewers: dblaikie, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9785
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237619 91177308-0d34-0410-b5e6-96231b3b80d8
Somehow I dropped this in r233585, and we haven't had `DEBUG_LOC_AGAIN`
records since. Add it back. Also tests that the output assembly looks
okay.
Fixes PR23436.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236661 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We don't seem to need to assert here, since this function's callers expect
to get a nullptr on error. This way we don't assert on user input.
Bug found with AFL fuzz.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9308
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236027 91177308-0d34-0410-b5e6-96231b3b80d8
As a space optimization, this instruction would just encode the pointer
type of the first operand and use the knowledge that the second and
third operands would be of the pointee type of the first. When typed
pointers go away, this assumption will no longer be available - so
encode the type of the second operand explicitly and rely on that for
the third.
Test case added to demonstrate the backwards compatibility concern,
which only comes up when the definition of the second operand comes
after the use (hence the weird basic block sequence) - at which point
the type needs to be explicitly encoded in the bitcode and the record
length changes to accommodate this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235966 91177308-0d34-0410-b5e6-96231b3b80d8
Use an extra bit in the CCInfo to flag the newer version of the
instructiont hat includes the type explicitly.
Tested the newer error cases I added, but didn't add tests for the finer
granularity improvements to existing error paths.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235160 91177308-0d34-0410-b5e6-96231b3b80d8
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235145 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235132 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Without this check the following case failed:
Skip a SubBlock which is not a MODULE_BLOCK_ID nor a BLOCKINFO_BLOCK_ID
Got to end of file
TheModule would still be == nullptr, and we would subsequentially fail
when materializing the Module (assert at the start of
BitcodeReader::MaterializeModule).
Bug found with AFL.
Reviewers: dexonsmith, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9014
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234887 91177308-0d34-0410-b5e6-96231b3b80d8
(turns out I had regressed this when sinking handling of this type down
into GetElementPtrInst::Create - since that asserted before the error
handling was performed)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232420 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232184 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
Since r199356, we've printed a warning when dropping debug info.
r225562 started crashing on that, since it registered a diagnostic
handler that only expected errors. This fixes the handler to expect
other severities. As a side effect, it now prints "error: " at the
start of error messages, similar to `llvm-as`.
There was a testcase for r199356, but it only really checked the
assembler. Move `test/Bitcode/drop-debug-info.ll` to `test/Assembler`,
and introduce `test/Bitcode/drop-debug-info.3.5.ll` (and companion
`.bc`) to test the bitcode reader.
Note: tools/gold/gold-plugin.cpp has an equivalent bug, but I'm not sure
what the best fix is there. I'll file a PR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230416 91177308-0d34-0410-b5e6-96231b3b80d8
Like r230414, add bitcode support including backwards compatibility, for
an explicit type parameter to GEP.
At the suggestion of Duncan I tried coalescing the two older bitcodes into a
single new bitcode, though I did hit a wrinkle: I couldn't figure out how to
create an explicit abbreviation for a record with a variable number of
arguments (the indicies to the gep). This means the discriminator between
inbounds and non-inbounds gep is a full variable-length field I believe? Is my
understanding correct? Is there a way to create such an abbreviation? Should I
just use two bitcodes as before?
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D7736
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230415 91177308-0d34-0410-b5e6-96231b3b80d8
While fuzzing LLVM bitcode files, I discovered that (1) the bitcode reader doesn't check that alignments are no larger than 2**29; (2) downstream code doesn't check the range; and (3) for values out of range, corresponding large memory requests (based on alignment size) will fail. This code fixes the bitcode reader to check for valid alignments, fixing this problem.
This CL fixes alignment value on global variables, functions, and instructions: alloca, load, load atomic, store, store atomic.
Patch by Karl Schimpf (kschimpf@google.com).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230180 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When creating {insert,extract}value instructions from a BitcodeReader, we
weren't verifying the fields were valid.
Bugs found with afl-fuzz
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7325
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229345 91177308-0d34-0410-b5e6-96231b3b80d8
Eventually we can make some of these pass the error along to the caller.
Reports a fatal error if:
We find an invalid abbrev record
We try to get an invalid abbrev number
We can't fill the current word due to an EOF
Fixed an invalid bitcode test to check for output with FileCheck
Bugs found with afl-fuzz
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226986 91177308-0d34-0410-b5e6-96231b3b80d8
No change in this commit, but clang was changed to also produce trivial comdats when
needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226467 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r226173, adding r226038 back.
No change in this commit, but clang was changed to also produce trivial comdats for
costructors, destructors and vtables when needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226242 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226038 91177308-0d34-0410-b5e6-96231b3b80d8
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225562 91177308-0d34-0410-b5e6-96231b3b80d8