The code that eliminated additional coalescable copies in
removeCopyByCommutingDef() used MergeValueNumberInto() which internally
may merge A into B or B into A. In this case A and B had different Def
points, so we have to reset ValNo.Def to the intended one after merging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225503 91177308-0d34-0410-b5e6-96231b3b80d8
As pointed out by Aditya (and Owen), when we elide an FP extend to form an FMA,
we need to extend the incoming operands so that the resulting node will really
be legal. This is currently enabled only for PowerPC, and it happens to work
there regardless, but this should fix the functionality for everyone else
should anyone else wish to use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225492 91177308-0d34-0410-b5e6-96231b3b80d8
As pointed out by Aditya (and Owen), there are two things wrong with this code.
First, it adds patterns which elide FP extends when forming FMAs, and that might
not be profitable on all targets (it belongs behind the pre-existing
aggressive-FMA-formation flag). This is fixed by this change.
Second, the resulting nodes might have operands of different types (the
extensions need to be re-added). That will be fixed in the follow-up commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225485 91177308-0d34-0410-b5e6-96231b3b80d8
Add a command-line option to enable hoisting even cheap instructions (in
low-register-pressure situations). This is turned off by default, but has
proved useful for testing purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225470 91177308-0d34-0410-b5e6-96231b3b80d8
PEI tries to keep track of how much starting or ending a call sequence adjusts the stack pointer by, so that it can resolve frame-index references. Currently, it takes a very simplistic view of how SP adjustments are done - both FrameStartOpcode and FrameDestroyOpcode adjust it exactly by the amount written in its first argument.
This view is in fact incorrect for some targets (e.g. due to stack re-alignment, or because it may want to adjust the stack pointer in multiple steps). However, that doesn't cause breakage, because most targets (the only in-tree exception appears to be 32-bit ARM) rely on being able to simplify the call frame pseudo-instructions earlier, so this code is never hit.
Moving the computation into TargetInstrInfo allows targets to override the way the adjustment is computed if they need to have a non-zero SPAdj.
Differential Revision: http://reviews.llvm.org/D6863
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225437 91177308-0d34-0410-b5e6-96231b3b80d8
A broken hint is a copy where both ends are assigned different colors. When a
variable gets evicted in the neighborhood of such copies, it is likely we can
reconcile some of them.
** Context **
Copies are inserted during the register allocation via splitting. These split
points are required to relax the constraints on the allocation problem. When
such a point is inserted, both ends of the copy would not share the same color
with respect to the current allocation problem. When variables get evicted,
the allocation problem becomes different and some split point may not be
required anymore. However, the related variables may already have been colored.
This usually shows up in the assembly with pattern like this:
def A
...
save A to B
def A
use A
restore A from B
...
use B
Whereas we could simply have done:
def B
...
def A
use A
...
use B
** Proposed Solution **
A variable having a broken hint is marked for late recoloring if and only if
selecting a register for it evict another variable. Indeed, if no eviction
happens this is pointless to look for recoloring opportunities as it means the
situation was the same as the initial allocation problem where we had to break
the hint.
Finally, when everything has been allocated, we look for recoloring
opportunities for all the identified candidates.
The recoloring is performed very late to rely on accurate copy cost (all
involved variables are allocated).
The recoloring is simple unlike the last change recoloring. It propagates the
color of the broken hint to all its copy-related variables. If the color is
available for them, the recoloring uses it, otherwise it gives up on that hint
even if a more complex coloring would have worked.
The recoloring happens only if it is profitable. The profitability is evaluated
using the expected frequency of the copies of the currently recolored variable
with a) its current color and b) with the target color. If a) is greater or
equal than b), then it is profitable and the recoloring happen.
** Example **
Consider the following example:
BB1:
a =
b =
BB2:
...
= b
= a
Let us assume b gets split:
BB1:
a =
b =
BB2:
c = b
...
d = c
= d
= a
Because of how the allocation work, b, c, and d may be assigned different
colors. Now, if a gets evicted to make room for c, assuming b and d were
assigned to something different than a.
We end up with:
BB1:
a =
st a, SpillSlot
b =
BB2:
c = b
...
d = c
= d
e = ld SpillSlot
= e
This is likely that we can assign the same register for b, c, and d,
getting rid of 2 copies.
** Performances **
Both ARM64 and x86_64 show performance improvements of up to 3% for the
llvm-testsuite + externals with Os and O3. There are a few regressions too that
comes from the (in)accuracy of the block frequency estimate.
<rdar://problem/18312047>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225422 91177308-0d34-0410-b5e6-96231b3b80d8
type (in addition to the memory type).
The *LoadExt* legalization handling used to only have one type, the
memory type. This forced users to assume that as long as the extload
for the memory type was declared legal, and the result type was legal,
the whole extload was legal.
However, this isn't always the case. For instance, on X86, with AVX,
this is legal:
v4i32 load, zext from v4i8
but this isn't:
v4i64 load, zext from v4i8
Whereas v4i64 is (arguably) legal, even without AVX2.
Note that the same thing was done a while ago for truncstores (r46140),
but I assume no one needed it yet for extloads, so here we go.
Calls to getLoadExtAction were changed to add the value type, found
manually in the surrounding code.
Calls to setLoadExtAction were mechanically changed, by wrapping the
call in a loop, to match previous behavior. The loop iterates over
the MVT subrange corresponding to the memory type (FP vectors, etc...).
I also pulled neighboring setTruncStoreActions into some of the loops;
those shouldn't make a difference, as the additional types are illegal.
(e.g., i128->i1 truncstores on PPC.)
No functional change intended.
Differential Revision: http://reviews.llvm.org/D6532
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225421 91177308-0d34-0410-b5e6-96231b3b80d8
The register coalescer used to remove implicit_defs when they are
covered by the main range anyway. With subreg liveness tracking we can't
do that anymore in places where the IMPLICIT_DEF is required as begin of
a subregister liverange.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225416 91177308-0d34-0410-b5e6-96231b3b80d8
I got confused and assumed SrcIdx/DstIdx of the CoalescerPair is a
subregister index in SrcReg/DstReg, but they are actually subregister
indices of the coalesced register that get you back to SrcReg/DstReg
when applied.
Fixed the bug, improved comments and simplified code accordingly.
Testcase by Tom Stellard!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225415 91177308-0d34-0410-b5e6-96231b3b80d8
A few loops do trickier things than just iterating on an MVT subset,
so I'll leave them be for now.
Follow-up of r225387.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225392 91177308-0d34-0410-b5e6-96231b3b80d8
This change includes the most basic possible GCStrategy for a GC which is using the statepoint lowering code. At the moment, this GCStrategy doesn't really do much - aside from actually generate correct stackmaps that is - but I went ahead and added a few extra correctness checks as proof of concept. It's mostly here to provide documentation on how to do one, and to provide a point for various optimization legality hooks I'd like to add going forward. (For context, see the TODOs in InstCombine around gc.relocate.)
Most of the validation logic added here as proof of concept will soon move in to the Verifier. That move is dependent on http://reviews.llvm.org/D6811
There was discussion in the review thread about addrspace(1) being reserved for something. I'm going to follow up on a seperate llvmdev thread. If needed, I'll update all the code at once.
Note that I am deliberately not making a GCStrategy required to use gc.statepoints with this change. I want to give folks out of tree - including myself - a chance to migrate. In a week or two, I'll make having a GCStrategy be required for gc.statepoints. To this end, I added the gc tag to one of the test cases but not others.
Differential Revision: http://reviews.llvm.org/D6808
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225365 91177308-0d34-0410-b5e6-96231b3b80d8
Used to iterate over previously added memory dependencies in
adjustChainDeps() and iterateChainSucc().
SDep::isCtrl() was previously used in these places, that also gave
anti and output edges. The code may be worse if these are followed,
because MisNeedChainEdge() will conservatively return true since a
non-memory instruction has no memory operands, and a false chain dep
will be added. It is also unnecessary since all memory accesses of
interest will be reached by memory dependencies, and there is a budget
limit for the number of edges traversed.
This problem was found on an out-of-tree target with enabled alias
analysis. No test case for an in-tree target has been found.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225351 91177308-0d34-0410-b5e6-96231b3b80d8
This is affecting the behavior of some ObjC++ / AArch64 test cases on Darwin.
Reverting to get the bots green while I track down the source of the changed
behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225311 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves the logic added at revision 224899 (see review D6728) that
teaches the backend when it is profitable to speculate calls to cttz/ctlz.
The original algorithm conservatively avoided speculating more than one
instruction from a basic block in a control flow grap modelling an if-statement.
In particular, the only allowed instruction (excluding the terminator) was a
call to cttz/ctlz. However, there are cases where we could be less conservative
and still be able to speculate a call to cttz/ctlz.
With this patch, CodeGenPrepare now tries to speculate a cttz/ctlz if the
result is zero extended/truncated in the same basic block, and the zext/trunc
instruction is "free" for the target.
Added new test cases to CodeGen/X86/cttz-ctlz.ll
Differential Revision: http://reviews.llvm.org/D6853
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225274 91177308-0d34-0410-b5e6-96231b3b80d8
dsymutil would like to use all the AsmPrinter/MCStreamer infrastructure
to stream out the DWARF. In order to do so, it will reuse the DIE object
and so this header needs to be public.
The interface exposed here has some corners that cannot be used without a
DwarfDebug object, but clients that want to stream Dwarf can just avoid
these.
Differential Revision: http://reviews.llvm.org/D6695
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225208 91177308-0d34-0410-b5e6-96231b3b80d8
The existing code provided for specifying a global loop alignment preference.
However, the preferred loop alignment might depend on the loop itself. For
recent POWER cores, loops between 5 and 8 instructions should have 32-byte
alignment (while the others are better with 16-byte alignment) so that the
entire loop will fit in one i-cache line.
To support this, getPrefLoopAlignment has been made virtual, and can be
provided with an optional MachineLoop* so the target can inspect the loop
before answering the query. The default behavior, as before, is to return the
value set with setPrefLoopAlignment. MachineBlockPlacement now queries the
target for each loop instead of only once per function. There should be no
functional change for other targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225117 91177308-0d34-0410-b5e6-96231b3b80d8
GCC does this for non-zero discriminators and since GCC doesn't produce
column info, that was the only place it comes up there. For LLVM, since
we can emit discriminators and/or column info, it makes more sense to
invert the condition and just test for changes in line number.
This should resolve at least some of the GDB 7.5 test suite failures
created by recent Clang changes that increase the location fidelity
(which, since Clang defaults to including column info on Linux by
default created a bunch of cases that confused GDB).
In theory we could do this better/differently by grouping actual source
statements together in a similar manner to the way lexical scopes are
handled but given that GDB isn't really in a position to consume that (&
users are probably somewhat used to different lines being different
'statements') this seems the safest and cheapest change. (I'm concerned
that doing this 'right' would bloat the debugloc data even further -
something Duncan's working hard to address)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225011 91177308-0d34-0410-b5e6-96231b3b80d8
Under the large code model, we cannot assume that __morestack lives within
2^31 bytes of the call site, so we cannot use pc-relative addressing. We
cannot perform the call via a temporary register, as the rax register may
be used to store the static chain, and all other suitable registers may be
either callee-save or used for parameter passing. We cannot use the stack
at this point either because __morestack manipulates the stack directly.
To avoid these issues, perform an indirect call via a read-only memory
location containing the address.
This solution is not perfect, as it assumes that the .rodata section
is laid out within 2^31 bytes of each function body, but this seems to
be sufficient for JIT.
Differential Revision: http://reviews.llvm.org/D6787
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225003 91177308-0d34-0410-b5e6-96231b3b80d8
If a linker directive is already quoted, don't try to quote it again, otherwise it creates a mess.
This pops up in places like:
#pragma comment(linker,"\"/foo bar'\"")
Differential Revision: http://reviews.llvm.org/D6792
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224998 91177308-0d34-0410-b5e6-96231b3b80d8
If the control flow is modelling an if-statement where the only instruction in
the 'then' basic block (excluding the terminator) is a call to cttz/ctlz,
CodeGenPrepare can try to speculate the cttz/ctlz call and simplify the control
flow graph.
Example:
\code
entry:
%cmp = icmp eq i64 %val, 0
br i1 %cmp, label %end.bb, label %then.bb
then.bb:
%c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true)
br label %end.bb
end.bb:
%cond = phi i64 [ %c, %then.bb ], [ 64, %entry]
\code
In this example, basic block %then.bb is taken if value %val is not zero.
Also, the phi node in %end.bb would propagate the size-of in bits of %val
only if %val is equal to zero.
With this patch, CodeGenPrepare will try to hoist the call to cttz from %then.bb
into basic block %entry only if cttz is cheap to speculate for the target.
Added two new hooks in TargetLowering.h to let targets customize the behavior
(i.e. decide whether it is cheap or not to speculate calls to cttz/ctlz). The
two new methods are 'isCheapToSpeculateCtlz' and 'isCheapToSpeculateCttz'.
By default, both methods return 'false'.
On X86, method 'isCheapToSpeculateCtlz' returns true only if the target has
LZCNT. Method 'isCheapToSpeculateCttz' only returns true if the target has BMI.
Differential Revision: http://reviews.llvm.org/D6728
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224899 91177308-0d34-0410-b5e6-96231b3b80d8
Masked vector intrinsics are a part of common LLVM IR, but they are really supported on AVX2 and AVX-512 targets. I added a code that translates masked intrinsic for all other targets. The masked vector intrinsic is converted to a chain of scalar operations inside conditional basic blocks.
http://reviews.llvm.org/D6436
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224897 91177308-0d34-0410-b5e6-96231b3b80d8
It's possible to have a prior definition of a symbol in module asm.
Raise an error instead of crashing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224828 91177308-0d34-0410-b5e6-96231b3b80d8
.set directives may be overridden by other .set directives as well as
label definitions.
This fixes PR22019.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224811 91177308-0d34-0410-b5e6-96231b3b80d8
This function constructs the main liverange by merging all subranges if
subregister liveness tracking is available. This should be slightly
faster to compute instead of performing the liveness calculation again
for the main range. More importantly it avoids cases where the main
liverange would cover positions where no subrange was live. These cases
happened for partial definitions where the actual defined part was dead
and only the undefined parts used later.
The register coalescing requires that every part covered by the main
live range has at least one subrange live.
I also expect this function to become usefull later for places where the
subranges are modified in a way that it is hard to correctly fix the
main liverange in the machine scheduler, we can simply reconstruct it
from subranges then.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224806 91177308-0d34-0410-b5e6-96231b3b80d8