Commit Graph

3 Commits

Author SHA1 Message Date
David Majnemer
cc714e2142 Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239940 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-17 20:52:32 +00:00
Hal Finkel
8a85dee989 [BDCE] Don't forget uses of root instructions seen before the instruction itself
When visiting the initial list of "root" instructions (those which must always
be alive), for those that are integer-valued (such as invokes returning an
integer), we mark their bits as (initially) all dead (we might, obviously, find
uses of those bits later, but all bits are assumed dead until proven
otherwise). Don't do so, however, if we're already seen a use of those bits by
another root instruction (such as a store).

Fixes a miscompile of the sanitizer unit tests on x86_64.

Also, add a debug line for visiting the root instructions, and remove a debug
line which tried to print instructions being removed (printing dead
instructions is dangerous, and can sometimes crash).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229618 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-18 03:12:28 +00:00
Hal Finkel
5b43c8551e [BDCE] Add a bit-tracking DCE pass
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.

Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).

The motivation for this is a case like:

int __attribute__((const)) foo(int i);
int bar(int x) {
  x |= (4 & foo(5));
  x |= (8 & foo(3));
  x |= (16 & foo(2));
  x |= (32 & foo(1));
  x |= (64 & foo(0));
  x |= (128& foo(4));
  return x >> 4;
}

As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).

I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).

I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229462 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-17 01:36:59 +00:00