code generation options from TargetMachine. This will depend
upon Function + TargetSubtargetInfo based code generation at
which point resetTargetOptions and this code can be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218491 91177308-0d34-0410-b5e6-96231b3b80d8
Add SelectionDAG TableGen definitions for BR_CC so that targets can instruction-select
BR_CC using TableGen pattern matching.
Patch by deadal nix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218476 91177308-0d34-0410-b5e6-96231b3b80d8
llvm::format() is somewhat unsafe. The compiler does not check that integer
parameter size matches the %x or %d size and it does not complain when a
StringRef is passed for a %s. And correctly using a StringRef with format() is
ugly because you have to convert it to a std::string then call c_str().
The cases where llvm::format() is useful is controlling how numbers and
strings are printed, especially when you want fixed width output. This
patch adds some new formatting functions to raw_streams to format numbers
and StringRefs in a type safe manner. Some examples:
OS << format_hex(255, 6) => "0x00ff"
OS << format_hex(255, 4) => "0xff"
OS << format_decimal(0, 5) => " 0"
OS << format_decimal(255, 5) => " 255"
OS << right_justify(Str, 5) => " foo"
OS << left_justify(Str, 5) => "foo "
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218463 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218455 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The N32/N64 ABI's require that structs passed in registers are laid out
such that spilling the register with 'sd' places the struct at the lowest
address. For little endian this is trivial but for big-endian it requires
that structs are shifted into the upper bits of the register.
We also require that structs passed in registers have the 'inreg'
attribute for big-endian N32/N64 to work correctly. This is because the
tablegen-erated calling convention implementation only has access to the
lowered form of struct arguments (one or more integers of up to 64-bits
each) and is unable to determine the original type.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5286
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218451 91177308-0d34-0410-b5e6-96231b3b80d8
If we have multiple coverage counts for the same segment, we need to
add them up rather than arbitrarily choosing one. This fixes that and
adds a test with template instantiations to exercise it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218432 91177308-0d34-0410-b5e6-96231b3b80d8
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218408 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218407 91177308-0d34-0410-b5e6-96231b3b80d8
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218406 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit faac033f73.
The test depends on all targets to be enabled in llc in order to pass,
and needs to be rewritten/refactored to not have that dependency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218393 91177308-0d34-0410-b5e6-96231b3b80d8
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218391 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218389 91177308-0d34-0410-b5e6-96231b3b80d8
This change replaces the brittle if/else chain of string comparisons
with a switch statement on the detected target triple, removing the
need for testing arbitrary architecture names returned from
getFileFormatName, whose primary purpose seems to be for display
(user-interface) purposes. The visitor now takes a reference to the
object file, rather than its arbitrary file format name to figure out
whether the file is a 32 or 64-bit object file and what the detected
target triple is.
A set of tests have been added to help show that the refactoring processes
relocations for the same targets as the original code.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218388 91177308-0d34-0410-b5e6-96231b3b80d8
The doFinalization method checks that the LoopToAliasSetMap is
empty. LICM populates that map as it runs through the loop nest,
deleting the entries for child loops as it goes. However, if a child
loop is deleted by another pass (e.g. unrolling) then the loop will
never be deleted from the map because LICM walks the loop nest to
find entries it can delete.
The fix is to delete the loop from the map and free the alias set
when the loop is deleted from the loop nest.
Differential Revision: http://reviews.llvm.org/D5305
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218387 91177308-0d34-0410-b5e6-96231b3b80d8
- BB duplication may not be desired on targets where there is no or small
branch penalty and code duplication needs restrict control.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218375 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch makes use of AtomicExpandPass in Power for inserting fences around
atomic as part of an effort to remove fence insertion from SelectionDAGBuilder.
As a big bonus, it lets us use sync 1 (lightweight sync, often used by the mnemonic
lwsync) instead of sync 0 (heavyweight sync) in many cases.
I also added a test, as there was no test for the barriers emitted by the Power
backend for atomic loads and stores.
Test Plan: new test + make check-all
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5180
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218331 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The goal is to eventually remove all the code related to getInsertFencesForAtomic
in SelectionDAGBuilder as it is wrong (designed for ARM, not really portable, works
mostly by accident because the backends are overly conservative), and repeats the
same logic that goes in emitLeading/TrailingFence.
In this patch, I make AtomicExpandPass insert the fences as it knows better
where to put them. Because this requires getting the fences and not just
passing an IRBuilder around, I had to change the return type of
emitLeading/TrailingFence.
This code only triggers on ARM for now. Because it is earlier in the pipeline
than SelectionDAGBuilder, it triggers and lowers atomic accesses to atomic so
SelectionDAGBuilder does not add barriers anymore on ARM.
If this patch is accepted I plan to implement emitLeading/TrailingFence for all
backends that setInsertFencesForAtomic(true), which will allow both making them
less conservative and simplifying SelectionDAGBuilder once they are all using
this interface.
This should not cause any functionnal change so the existing tests are used
and not modified.
Test Plan: make check-all, benefits from existing tests of atomics on ARM
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218329 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the old JIT memory manager (which does not provide any
useful functionality now that the old JIT is gone), and migrates the few
remaining clients over to SectionMemoryManager.
http://llvm.org/PR20848
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218316 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes a couple of issues. One is ensuring that AOK_Label rewrite
rules have a lower priority than AOK_Skip rules, as AOK_Skip needs to
be able to skip the brackets properly. The other part of the fix ensures
that we don't overwrite Identifier when looking up the identifier, and
that we use the locally available information to generate the AOK_Label
rewrite in ParseIntelIdentifier. Doing that in CreateMemForInlineAsm
would be problematic since the Start location there may point to the
beginning of a bracket expression, and not necessarily the beginning of
an identifier.
This also means that we don't need to carry around the InternlName field,
which helps simplify the code.
Test Plan: This will be tested on the clang side.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218270 91177308-0d34-0410-b5e6-96231b3b80d8
As of July 2014, all backends have been updated to implement
AtomicRMWInst::Nand as ~(x & y) (and not as x & ~y, as some did previously).
This was added to the release notes in r212635 (and the LangRef had been
changed), but it seems that we forgot to update the header-file description.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218236 91177308-0d34-0410-b5e6-96231b3b80d8
The implementation of the callback in clang's Sema will return an
internal name for labels.
Test Plan: Will be tested in clang.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218229 91177308-0d34-0410-b5e6-96231b3b80d8
This is purely a plumbing patch. No functional changes intended.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
The first step is to add a target hook for RSQRTE, take the already target-independent code selfishly hoarded by PPC, and put it into DAGCombiner.
Next steps:
The code in DAGCombiner::BuildRSQRTE() should be refactored further; tests that exercise that logic need to be added.
Logic in PPCTargetLowering::BuildRSQRTE() should be hoisted into DAGCombiner.
X86 and AArch64 overrides for TargetLowering.BuildRSQRTE() should be added.
Differential Revision: http://reviews.llvm.org/D5425
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218219 91177308-0d34-0410-b5e6-96231b3b80d8
This splits the logic for actually looking up coverage information
from the logic that displays it. These were tangled rather thoroughly
so this change is a bit large, but it mostly consists of moving things
around. The coverage lookup logic itself now lives in the library,
rather than being spread between the library and the tool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218184 91177308-0d34-0410-b5e6-96231b3b80d8
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.
Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.
Patch by Olivier Sallenave, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218120 91177308-0d34-0410-b5e6-96231b3b80d8
With this optimization, we will not always insert zext for values crossing
basic blocks, but insert sext if the users of a value crossing basic block
has preference of sign predicate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218101 91177308-0d34-0410-b5e6-96231b3b80d8
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218078 91177308-0d34-0410-b5e6-96231b3b80d8
shim between the TargetTransformInfo immutable pass and the Subtarget
via the TargetMachine and Function. Migrate a single call from
BasicTargetTransformInfo as an example and provide shims where TargetMachine
begins taking a Function to determine the subtarget.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218004 91177308-0d34-0410-b5e6-96231b3b80d8
This type isn't owned polymorphically (as demonstrated by making the
dtor protected and everything still compiling) so just address the
warning by protecting the base dtor and making the derived class final.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217990 91177308-0d34-0410-b5e6-96231b3b80d8
It isn't always useful to skip blank lines, as evidenced by the
somewhat awkward use of line_iterator in llvm-cov. This adds a knob to
control whether or not to skip blanks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217960 91177308-0d34-0410-b5e6-96231b3b80d8
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).
Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217928 91177308-0d34-0410-b5e6-96231b3b80d8
By class-instance values I mean 'Class<Arg>' in 'Class<Arg>.Field' or in
'Other<Class<Arg>>' (syntactically s SimpleValue). This is to differentiate
from unnamed/anonymous record definitions (syntactically an ObjectBody) which
are not affected by this change.
Consider the testcase:
class Struct<int i> {
int I = !shl(i, 1);
int J = !shl(I, 1);
}
class Class<Struct s> {
int Class_J = s.J;
}
multiclass MultiClass<int i> {
def Def : Class<Struct<i>>;
}
defm Defm : MultiClass<2>;
Before this fix, DefmDef.Class_J yields !shl(I, 1) instead of 8.
This is the sequence of events. We start with this:
multiclass MultiClass<int i> {
def Def : Class<Struct<i>>;
}
During ParseDef the anonymous object for the class-instance value is created:
multiclass Multiclass<int i> {
def anonymous_0 : Struct<i>;
def Def : Class<NAME#anonymous_0>;
}
Then class Struct<i> is added to anonymous_0. Also Class<NAME#anonymous_0> is
added to Def:
multiclass Multiclass<int i> {
def anonymous_0 {
int I = !shl(i, 1);
int J = !shl(I, 1);
}
def Def {
int Class_J = NAME#anonymous_0.J;
}
}
So far so good but then we move on to instantiating this in the defm
by substituting the template arg 'i'.
This is how the anonymous prototype looks after fully instantiating.
defm Defm = {
def Defmanonymous_0 {
int I = 4;
int J = !shl(I, 1);
}
Note that we only resolved the reference to the template arg. The
non-template-arg reference in 'J' has not been resolved yet.
Then we go on to instantiating the Def prototype:
def DefmDef {
int Class_J = NAME#anonymous_0.J;
}
Which is resolved to Defmanonymous_0.J and then to !shl(I, 1).
When we fully resolve each record in a defm, Defmanonymous_0.J does get set
to 8 but that's too late for its use.
The patch adds a new attribute to the Record class that indicates that this
def is actually a class-instance value that may be *used* by other defs in a
multiclass. (This is unlike regular defs which don't reference each other and
thus can be resolved indepedently.) They are then fully resolved before the
other defs while the multiclass is instantiated.
I added vg_leak to the new test. I am not sure if this is necessary but I
don't think I have a way to test it. I can also check in without the XFAIL
and let the bots test this part.
Also tested that X86.td.expanded and AAarch64.td.expanded were unchange before
and after this change. (This issue triggering this problem is a WIP patch.)
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217886 91177308-0d34-0410-b5e6-96231b3b80d8
objects. There were a few FIXMEs in ARMAsmBackend.cpp suggesting the class
definitions should be in a separate file. Starting with ARMAsmBackend, the
class definition has been put in a header file, and #includes reduced. Each
sub-type of ARMAsmBackend is now in its own header file.
Derived types have been painted with a different color of bike-shed:
s/DarwinARMAsmBackend/ARMAsmBackendDarwin/g
s/ARMWinCOFFAsmBackend/ARMAsmBackendWinCOFF/g
s/ELFARMAsmBackend/ARMAsmBackendELF/g
Finally, clang-format has been run across ARMAsmBackend.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217866 91177308-0d34-0410-b5e6-96231b3b80d8
Teach yaml2obj how to make a bigobj COFF file. Like the rest of LLVM,
we automatically decide whether or not to use regular COFF or bigobj
COFF on the fly depending on how many sections the resulting object
would have.
This ends the task of adding bigobj support to LLVM.
N.B. This was tested by forcing yaml2obj to be used in bigobj mode
regardless of the number of sections. While a dedicated test was
written, the smallest I could make it was 36 MB (!) of yaml and it still
took a significant amount of time to execute on a powerful machine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217858 91177308-0d34-0410-b5e6-96231b3b80d8
This finishes the ability of llvm-objdump to print out all information from
the LC_DYLD_INFO load command.
The -bind option prints out symbolic references that dyld must resolve
immediately.
The -lazy-bind option prints out symbolc reference that are lazily resolved on
first use.
The -weak-bind option prints out information about symbols which dyld must
try to coalesce across images.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217853 91177308-0d34-0410-b5e6-96231b3b80d8
This lowers frem to a runtime libcall inside fast-isel.
The test case also checks the CallLoweringInfo bug that was exposed by this
change.
This fixes rdar://problem/18342783.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217833 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug in FastISel::CallLoweringInfo, where the number of
arguments was obtained from the argument vector before it had been
initialized.
Test case follows in another commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217832 91177308-0d34-0410-b5e6-96231b3b80d8
We already have routines to encode SLEB128 as well as encode/decode ULEB128.
This last function fills out the matrix. I'll need this for some llvm-objdump
work I am doing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217830 91177308-0d34-0410-b5e6-96231b3b80d8
Teach WinCOFFObjectWriter how to write -mbig-obj style object files;
these object files allow for more sections inside an object file.
Our support for BigObj is notably different from binutils and cl: we
implicitly upgrade object files to BigObj instead of asking the user to
compile the same file *again* but with another flag. This matches up
with how LLVM treats ELF variants.
This was tested by forcing LLVM to always emit BigObj files and running
the entire test suite. A specific test has also been added.
I've lowered the maximum number of sections in a normal COFF file,
VS "14" CTP 3 supports no more than 65279 sections. This is important
otherwise we might not switch to BigObj quickly enough, leaving us with
a COFF file that we couldn't link.
yaml2obj support is all that remains to implement.
Differential Revision: http://reviews.llvm.org/D5349
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217812 91177308-0d34-0410-b5e6-96231b3b80d8
There's some other cleanup that could happen here, but this is at least
the mechanical transformation to unique_ptr.
Derived from a patch by Anton Yartsev.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217803 91177308-0d34-0410-b5e6-96231b3b80d8
On MachO, and MachO only, we cannot have a truly empty function since that
breaks the linker logic for atomizing the section.
When we are emitting a frame pointer, the presence of an unreachable will
create a cfi instruction pointing past the last instruction. This is perfectly
fine. The FDE information encodes the pc range it applies to. If some tool
cannot handle this, we should explicitly say which bug we are working around
and only work around it when it is actually relevant (not for ELF for example).
Given the unreachable we could omit the .cfi_def_cfa_register, but then
again, we could also omit the entire function prologue if we wanted to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217801 91177308-0d34-0410-b5e6-96231b3b80d8
More methods to follow.
Using StringRef allows us the EE interface to work with more string types
without forcing construction of std::strings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217794 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't change the interface or gives additional safety but removes
a ton of retain/release boilerplate.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217778 91177308-0d34-0410-b5e6-96231b3b80d8
RAUW was only used on DIType to merge declarations and full definitions
of types. In order to support the same functionality for functions and
global variables, move the function up type DI type hierarchy to the
common parent of DIType, DISubprogram and DIVariable which is
DIDescriptor.
This functionality will be exercized when we add the code to emit
imported declarations for forward declared function/variables.
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5325
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217748 91177308-0d34-0410-b5e6-96231b3b80d8
A single function in SourceCoverageDataManager was the only user of
some of the comparisons in CounterMappingRegion, and at this point we
know that only one file is relevant. This lets us use slightly simpler
logic directly in the client.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217745 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to my previous -exports-trie option, the -rebase option dumps info from
the LC_DYLD_INFO load command. The rebasing info is a list of the the locations
that dyld needs to adjust if a mach-o image is not loaded at its preferred
address. Since ASLR is now the default, images almost never load at their
preferred address, and thus need to be rebased by dyld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217709 91177308-0d34-0410-b5e6-96231b3b80d8
The main difference is the removal of
std::error_code exists(const Twine &path, bool &result);
It was an horribly redundant interface since a file not existing is also a valid
error_code. Now we have an access function that returns just an error_code. This
is the only function that has to be implemented for Unix and Windows. The
functions can_write, exists and can_execute an now just wrappers.
One still has to be very careful using these function to avoid introducing
race conditions (Time of check to time of use).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217625 91177308-0d34-0410-b5e6-96231b3b80d8
Leveraging both intrusive shared_ptr-ing (std::enable_shared_from_this)
and shared_ptr<T>-owning-U (to allow external users to hold
std::shared_ptr<CostT> while keeping the underlying PoolEntry alive).
The intrusiveness could be removed if we had a weak_set that implicitly
removed items from the set when their underlying data went away.
This /might/ fix an existing memory leak reported by LeakSanitizer in
r217504.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217563 91177308-0d34-0410-b5e6-96231b3b80d8
With this a DataLayoutPass can be reused for multiple modules.
Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.
Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217548 91177308-0d34-0410-b5e6-96231b3b80d8
Clang/LLVM trunk now have support for __builtin_assume_aligned, turn this &&
into an || so we can use it ourselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217545 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Make CallingConv::ID a plain unsigned instead of enum with a
fixed set of valus. LLVM IR allows arbitraty calling conventions (you are
free to write cc12345), and loading them as enum is an undefined
behavior. This was reported by UBSan.
Test Plan: llvm regression test suite
Reviewers: nicholas
Reviewed By: nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5248
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217529 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for reading the "bigobj" variant of COFF produced by
cl's /bigobj and mingw's -mbig-obj.
The most significant difference that bigobj brings is more than 2**16
sections to COFF.
bigobj brings a few interesting differences with it:
- It doesn't have a Characteristics field in the file header.
- It doesn't have a SizeOfOptionalHeader field in the file header (it's
only used in executable files).
- Auxiliary symbol records have the same width as a symbol table entry.
Since symbol table entries are bigger, so are auxiliary symbol
records.
Write support will come soon.
Differential Revision: http://reviews.llvm.org/D5259
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217496 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch moves the profile reading logic out of the Sample Profile
transformation into a generic profile reader facility in
lib/ProfileData.
The intent is to use this new reader to implement a sample profile
reader/writer that can be used to convert sample profiles from external
sources into LLVM.
This first patch introduces no functional changes. It moves the profile
reading code from lib/Transforms/SampleProfile.cpp into
lib/ProfileData/SampleProfReader.cpp.
In subsequent patches I will:
- Add a bitcode format for sample profiles to allow for more efficient
encoding of the profile.
- Add a writer for both text and bitcode format profiles.
- Add a 'convert' command to llvm-profdata to be able to convert between
the two (and serve as entry point for other sample profile formats).
Reviewers: bogner, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5250
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217437 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-cov had a SourceRange type that was nearly identical to a
CountedRegion except that it shaved off a couple of fields. There
aren't likely to be enough of these for the minor memory savings to be
worth the extra complexity here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217417 91177308-0d34-0410-b5e6-96231b3b80d8
This name was too similar to CoverageMappingRegion, and the type
really belongs in the coverage library anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217416 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, fast-isel would not clean up after failing to select a call
instruction, because it would have called flushLocalValueMap() which moves
the insertion point, making SavedInsertPt in selectInstruction() invalid.
Fixing this by making SavedInsertPt a member variable, and having
flushLocalValueMap() update it.
This removes some redundant code at -O0, and more importantly fixes PR20863.
Differential Revision: http://reviews.llvm.org/D5249
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217401 91177308-0d34-0410-b5e6-96231b3b80d8
UBSan complained about using static_cast on the invalid (tombstone, etc.)
pointers used by DenseMap. Use a reinterpret_cast instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217397 91177308-0d34-0410-b5e6-96231b3b80d8