We were incorrectly using compiler_used instead of compiler.used. Unfortunately
the passes using the broken name had tests also using the broken name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186705 91177308-0d34-0410-b5e6-96231b3b80d8
implementation of the SROA algorithm. We were using the term 'partition'
in many places that no longer ever represented an actual partition, but
rather just an arbitrary slice of an alloca.
No functionality change intended here. Mostly just renaming of types,
functions, variables, and rewording of comments. Several comments were
rewritten to make a lot more sense in the new structure of things.
The stats are still weird and not reflective of how this really works.
I'll fix those up in a separate patch as it is a touch more semantic of
a change...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186659 91177308-0d34-0410-b5e6-96231b3b80d8
SROA.
The crux of the issue is that now we track uses of a partition of the
alloca in two places: the iterators over the partitioning uses and the
previously collected split uses vector. We weren't accounting for the
fact that the split uses might invalidate integer widening in ways other
than due to their width (in this case due to being volatile).
Further reduced testcase added to the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186655 91177308-0d34-0410-b5e6-96231b3b80d8
uses that wanted it. Also change the interface for createCompileUnit
to compensate. Fix comments that refer to TheCU as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186637 91177308-0d34-0410-b5e6-96231b3b80d8
uses that wanted it. Also change the interface for createCompileUnit
to compensate. Fix comments that refer to TheCU as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186599 91177308-0d34-0410-b5e6-96231b3b80d8
end of a vector. This was found with ASan. I've had one other report of
a crasher, but thus far been unable to reproduce the crash. It may well
be fixed with this version, and if not I'd like to get more information
from the build bots about what is happening.
See r186316 for the full commit log for the new implementation of the
SROA algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186565 91177308-0d34-0410-b5e6-96231b3b80d8
Duncan pointed out a mistake in my fix in r186425 when only one of the allocas
being compared had the target-default alignment. This is essentially his
suggested solution. Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186510 91177308-0d34-0410-b5e6-96231b3b80d8
This check does not always work because not all of the GEPs use a constant offset, but it happens often enough to reduce the number of times we use SCEV.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186465 91177308-0d34-0410-b5e6-96231b3b80d8
This centralizes the handling of O_BINARY and opens the way for hiding more
differences (like how open behaves with directories).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186447 91177308-0d34-0410-b5e6-96231b3b80d8
For safety, the inliner cannot decrease the allignment on an alloca when
merging it with another.
I've included two variants of the test case for this: one with DataLayout
available, and one without. When DataLayout is not available, if only one of
the allocas uses the default alignment (getAlignment() == 0), then they cannot
be safely merged.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186425 91177308-0d34-0410-b5e6-96231b3b80d8
a bot.
This reverts the commit which introduced a new implementation of the
fancy SROA pass designed to reduce its overhead. I'll skip the huge
commit log here, refer to r186316 if you're looking for how this all
works and why it works that way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186332 91177308-0d34-0410-b5e6-96231b3b80d8
different core implementation strategy.
Previously, SROA would build a relatively elaborate partitioning of an
alloca, associate uses with each partition, and then rewrite the uses of
each partition in an attempt to break apart the alloca into chunks that
could be promoted. This was very wasteful in terms of memory and compile
time because regardless of how complex the alloca or how much we're able
to do in breaking it up, all of the datastructure work to analyze the
partitioning was done up front.
The new implementation attempts to form partitions of the alloca lazily
and on the fly, rewriting the uses that make up that partition as it
goes. This has a few significant effects:
1) Much simpler data structures are used throughout.
2) No more double walk of the recursive use graph of the alloca, only
walk it once.
3) No more complex algorithms for associating a particular use with
a particular partition.
4) PHI and Select speculation is simplified and happens lazily.
5) More precise information is available about a specific use of the
alloca, removing the need for some side datastructures.
Ultimately, I think this is a much better implementation. It removes
about 300 lines of code, but arguably removes more like 500 considering
that some code grew in the process of being factored apart and cleaned
up for this all to work.
I've re-used as much of the old implementation as possible, which
includes the lion's share of code in the form of the rewriting logic.
The interesting new logic centers around how the uses of a partition are
sorted, and split into actual partitions.
Each instruction using a pointer derived from the alloca gets
a 'Partition' entry. This name is totally wrong, but I'll do a rename in
a follow-up commit as there is already enough churn here. The entry
describes the offset range accessed and the nature of the access. Once
we have all of these entries we sort them in a very specific way:
increasing order of begin offset, followed by whether they are
splittable uses (memcpy, etc), followed by the end offset or whatever.
Sorting by splittability is important as it simplifies the collection of
uses into a partition.
Once we have these uses sorted, we walk from the beginning to the end
building up a range of uses that form a partition of the alloca.
Overlapping unsplittable uses are merged into a single partition while
splittable uses are broken apart and carried from one partition to the
next. A partition is also introduced to bridge splittable uses between
the unsplittable regions when necessary.
I've looked at the performance PRs fairly closely. PR15471 no longer
will even load (the module is invalid). Not sure what is up there.
PR15412 improves by between 5% and 10%, however it is nearly impossible
to know what is holding it up as SROA (the entire pass) takes less time
than reading the IR for that test case. The analysis takes the same time
as running mem2reg on the final allocas. I suspect (without much
evidence) that the new implementation will scale much better however,
and it is just the small nature of the test cases that makes the changes
small and noisy. Either way, it is still simpler and cleaner I think.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186316 91177308-0d34-0410-b5e6-96231b3b80d8
If an outside loop user of the reduction value uses the header phi node we
cannot just reduce the vectorized phi value in the vector code epilog because
we would loose VF-1 reductions.
lp:
p = phi (0, lv)
lv = lv + 1
...
brcond , lp, outside
outside:
usr = add 0, p
(Say the loop iterates two times, the value of p coming out of the loop is one).
We cannot just transform this to:
vlp:
p = phi (<0,0>, lv)
lv = lv + <1,1>
..
brcond , lp, outside
outside:
p_reduced = p[0] + [1];
usr = add 0, p_reduced
(Because the original loop iterated two times the vectorized loop would iterate
one time, but p_reduced ends up being zero instead of one).
We would have to execute VF-1 iterations in the scalar remainder loop in such
cases. For now, just disable vectorization.
PR16522
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186256 91177308-0d34-0410-b5e6-96231b3b80d8
In general, one should always complete CFG modifications first, update
CFG-based analyses, like Dominatores and LoopInfo, then generate
instruction sequences.
LoopVectorizer was creating a new loop, calling SCEVExpander to
generate checks, then updating LoopInfo. I just changed the order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186241 91177308-0d34-0410-b5e6-96231b3b80d8