a reduction.
Really. Under certain circumstances (the use list of an instruction has to be
set up right - hence the extra pass in the test case) we would not recognize
when a value in a potential reduction cycle was used multiple times by the
reduction cycle.
Fixes PR18526.
radar://15851149
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199570 91177308-0d34-0410-b5e6-96231b3b80d8
for (i = 0; i < N; ++i)
A[i * Stride1] += B[i * Stride2];
We take loops like this and check that the symbolic strides 'Strided1/2' are one
and drop to the scalar loop if they are not.
This is currently disabled by default and hidden behind the flag
'enable-mem-access-versioning'.
radar://13075509
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198950 91177308-0d34-0410-b5e6-96231b3b80d8
A phi node operand or an instruction operand could be a constant expression that
can trap (division). Check that we don't vectorize such cases.
PR16729
radar://15653590
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197449 91177308-0d34-0410-b5e6-96231b3b80d8
Test is platform independent, but I don't want to force vector-width, or
that could spoil the pragma test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196539 91177308-0d34-0410-b5e6-96231b3b80d8
The intended behaviour is to force vectorization on the presence
of the flag (either turn on or off), and to continue the behaviour
as expected in its absence. Tests were added to make sure the all
cases are covered in opt. No tests were added in other tools with
the assumption that they should use the PassManagerBuilder in the
same way.
This patch also removes the outdated -late-vectorize flag, which was
on by default and not helping much.
The pragma metadata is being attached to the same place as other loop
metadata, but nothing forbids one from attaching it to a function
(to enable #pragma optimize) or basic blocks (to hint the basic-block
vectorizers), etc. The logic should be the same all around.
Patches to Clang to produce the metadata will be produced after the
initial implementation is agreed upon and committed. Patches to other
vectorizers (such as SLP and BB) will be added once we're happy with
the pass manager changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196537 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
clang enables vectorization at optimization levels > 1 and size level < 2. opt
should behave similarily.
Loop vectorization and SLP vectorization can be disabled with the flags
-disable-(loop/slp)-vectorization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196294 91177308-0d34-0410-b5e6-96231b3b80d8
In signed arithmetic we could end up with an i64 trip count for an i32 phi.
Because it is signed arithmetic we know that this is only defined if the i32
does not wrap. It is therefore safe to truncate the i64 trip count to a i32
value.
Fixes PR18049.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195787 91177308-0d34-0410-b5e6-96231b3b80d8
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195504 91177308-0d34-0410-b5e6-96231b3b80d8
We are slicing an array of Value pointers and process those slices in a loop.
The problem is that we might invalidate a later slice by vectorizing a former
slice.
Use a WeakVH to track the pointer. If the pointer is deleted or RAUW'ed we can
tell.
The test case will only fail when running with libgmalloc.
radar://15498655
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195162 91177308-0d34-0410-b5e6-96231b3b80d8
In some case the loop exit count computation can overflow. Extend the type to
prevent most of those cases.
The problem is loops like:
int main ()
{
int a = 1;
char b = 0;
lbl:
a &= 4;
b--;
if (b) goto lbl;
return a;
}
The backedge count is 255. The induction variable type is i8. If we add one to
255 to get the exit count we overflow to zero.
To work around this issue we extend the type of the induction variable to i32 in
the case of i8 and i16.
PR17532
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195008 91177308-0d34-0410-b5e6-96231b3b80d8
When we vectorize a scalar access with no alignment specified, we have to set
the target's abi alignment of the scalar access on the vectorized access.
Using the same alignment of zero would be wrong because most targets will have a
bigger abi alignment for vector types.
This probably fixes PR17878.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194876 91177308-0d34-0410-b5e6-96231b3b80d8
When the elements are extracted from a select on vectors
or a vector select, do the select on the extracted scalars
from the input if there is only one use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194013 91177308-0d34-0410-b5e6-96231b3b80d8
When the loop vectorizer was part of the SCC inliner pass manager gvn would
run after the loop vectorizer followed by instcombine. This way redundancy
(multiple uses) were removed and instcombine could perform scalarization on the
induction variables. Having moved the loop vectorizer to later we no longer run
any form of redundancy elimination before we perform instcombine. This caused
vectorized induction variables to survive that did not before.
On a recent iMac this helps linpack back from 6000Mflops to 7000Mflops.
This should also help lpbench and paq8p.
I ran a Release (without Asserts) build over the test-suite and did not see any
negative impact on compile time.
radar://15339680
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193891 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a pointer to a single-element struct we can still build wide loads
and stores to it (if there is no padding).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193860 91177308-0d34-0410-b5e6-96231b3b80d8
When a dependence check fails we can still try to vectorize loops with runtime
array bounds checks.
This helps linpack to vectorize a loop in dgefa. And we are back to 2x of the
scalar performance on a corei7-avx.
radar://15339680
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193853 91177308-0d34-0410-b5e6-96231b3b80d8
Updated a test case that assumed that <2 x double> would vectorize to use
<4 x float>.
radar://15338229
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193574 91177308-0d34-0410-b5e6-96231b3b80d8
The loop vectorizer does not currently understand how to vectorize
extractelement instructions. The existing check, which excluded all
vector-valued instructions, did not catch extractelement instructions because
it checked only the return value. As a result, vectorization would proceed,
producing illegal instructions like this:
%58 = extractelement <2 x i32> %15, i32 0
%59 = extractelement i32 %58, i32 0
where the second extractelement is illegal because its first operand is not a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193434 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure we mark all loops (scalar and vector) when vectorizing,
so that we don't try to vectorize them anymore. Also, set unroll
to 1, since this is what we check for on early exit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193349 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise, we don't perform operations that would have been performed on
the scalar version.
Fixes PR17498.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192133 91177308-0d34-0410-b5e6-96231b3b80d8
Don't vectorize with a runtime check if it requires a
comparison between pointers with different address spaces.
The values can't be assumed to be directly comparable.
Previously it would create an illegal bitcast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191862 91177308-0d34-0410-b5e6-96231b3b80d8
Revert 191122 - with extra checks we are allowed to vectorize math library
function calls.
Standard library indentifiers are reserved names so functions with external
linkage must not overrided them. However, functions with internal linkage can.
Therefore, we can vectorize calls to math library functions with a check for
external linkage and matching signature. This matches what we do during
SelectionDAG building.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191206 91177308-0d34-0410-b5e6-96231b3b80d8
XCore target: Add XCoreTargetTransformInfo
This is where getNumberOfRegisters() resides, which in turn returns the
number of vector registers (=0).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190936 91177308-0d34-0410-b5e6-96231b3b80d8
We would have to compute the pre increment value, either by computing it on
every loop iteration or by splitting the edge out of the loop and inserting a
computation for it there.
For now, just give up vectorizing such loops.
Fixes PR17179.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190790 91177308-0d34-0410-b5e6-96231b3b80d8
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190205 91177308-0d34-0410-b5e6-96231b3b80d8
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).
In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189499 91177308-0d34-0410-b5e6-96231b3b80d8
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189282 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables unrolling of loops when vectorization is legal but not profitable.
We add a new class InnerLoopUnroller, that extends InnerLoopVectorizer and replaces some of the vector-specific logic with scalars.
This patch does not introduce any runtime regressions and improves the following workloads:
SingleSource/Benchmarks/Shootout/matrix -22.64%
SingleSource/Benchmarks/Shootout-C++/matrix -13.06%
External/SPEC/CINT2006/464_h264ref/464_h264ref -3.99%
SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding -1.95%
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189281 91177308-0d34-0410-b5e6-96231b3b80d8
A single metadata will not span multiple lines. This also helps me with
my script to automatic update the testing cases.
A debug info testing case should have a llvm.dbg.cu.
Do not use hard-coded id for debug nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189033 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.
In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.
In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188728 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
All libm floating-point rounding functions, except for round(), had their own
ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm
adding ISD::FROUND so that round() can be custom lowered as well.
For the most part, this is straightforward. I've added an intrinsic
and a matching ISD node just like those for nearbyint() and friends. The
SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed
fround).
This will be used by the PowerPC backend in a follow-up commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187926 91177308-0d34-0410-b5e6-96231b3b80d8
Function attributes are the future! So just query whether we want to realign the
stack directly from the function instead of through a random target options
structure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187618 91177308-0d34-0410-b5e6-96231b3b80d8