The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224134 91177308-0d34-0410-b5e6-96231b3b80d8
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223793 91177308-0d34-0410-b5e6-96231b3b80d8
This allows it to work with non trivial manglings like the one in COFF.
Amusingly, this can be tested with gold, as emit-llvm causes the plugin to
exit before any COFF is generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223790 91177308-0d34-0410-b5e6-96231b3b80d8
with fixes. Includes the move of tests for llvm-objdump for universal files to an X86
directory. And the fix where it was failing on linux Rafael tracked down with asan.
I had both Jim Grosbach and Adam Hemet look over the second fix since I could not
set up asan to reproduce with the old version but not with the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223416 91177308-0d34-0410-b5e6-96231b3b80d8
Add more tests to make sure the encoding/decoding of build attributes works
correctly for all permissible values of build attributes. For cases where there
are an infinite number of such values, a representative subset has been settled
for.
Change-Id: I2643c9624c211b2d56405306e16eec2d487bc5d6
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222917 91177308-0d34-0410-b5e6-96231b3b80d8
The string data for string-valued build attributes were being unconditionally
uppercased. There is no mention in the ARM ABI addenda about case conventions,
so it's technically implementation defined as to whether the data are
capitialised in some way or not. However, there are good reasons not to
captialise the data.
* It's less work.
* Some vendors may legitimately have case-sensitive checks for these
attributes which would fail on LLVM generated object files.
* There could be locale issues with uppercasing.
The original reasons for uppercasing appear to have stemmed from an
old codesourcery toolchain behaviour, see
http://comments.gmane.org/gmane.comp.compilers.llvm.cvs/87133
This patch makes the object file emitted no longer captialise string
data, it encodes as seen in the assembly source.
Change-Id: Ibe20dd6e60d2773d57ff72a78470839033aa5538
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222882 91177308-0d34-0410-b5e6-96231b3b80d8
This mostly entails adding relocations, however there are a couple of
changes to existing relocations:
1. R_AARCH64_NONE is defined to be zero rather than 256
R_AARCH64_NONE has been defined to be zero for a long time elsewhere
e.g. binutils and glibc since the submission of the AArch64 port in
2012 so this is required for compatibility.
2. R_AARCH64_TLSDESC_ADR_PAGE renamed to R_AARCH64_TLSDESC_ADR_PAGE21
I don't think there is any way for relocation names to leak out of LLVM
so this should not break anything.
Tested with check-all with no regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222821 91177308-0d34-0410-b5e6-96231b3b80d8
It printed out base relocation table header as table entry.
This patch also makes llvm-readobj to not skip ABSOLUTE entries
becuase it was confusing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222299 91177308-0d34-0410-b5e6-96231b3b80d8
We claimed that we were printing the Subystem field when we were
actually printing the Characteristics field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222216 91177308-0d34-0410-b5e6-96231b3b80d8
We were a little lax in a few areas:
- We pretended that import libraries were like any old COFF file, they
are not. In fact, they aren't really COFF files at all, we should
probably grow some specialized functionality to handle them smarter.
- Our symbol iterators were more than happy to attempt to go past the
end of the symbol table if you had a symbol with a bad list of
auxiliary symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222124 91177308-0d34-0410-b5e6-96231b3b80d8
FYI, removed the unused MCInstrAnalysis as it does not exist for 64-bit ARM and
was causing a “couldn't initialize disassembler for target” error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222045 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Teach llvm-symbolizer about PowerPC64 ELF function descriptors. Symbols in the .opd section point to function descriptors, the first word of which is a pointer to the real function. For the purposes of symbolizing we pretend that the symbol points directly to the function.
This is enough to get decent function names in stack traces for unoptimized binaries, which fixes the sanitizer print-stack-trace test on PowerPC64 Linux.
Reviewers: kcc, willschm, samsonov
Reviewed By: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6110
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221514 91177308-0d34-0410-b5e6-96231b3b80d8
add the code and test cases for 32-bit ARM symbolizer.
Also fixed the printing of data in code as it was not using the table correctly
and needed to fix one of the test cases too.
This will break lld’s test/mach-o/arm-interworking-movw.yaml till the tweak
for that is made. Which I’ll be committing immediately after this commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221470 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch extends the 'show' and 'merge' commands in llvm-profdata to handle
sample PGO formats. Using the 'merge' command it is now possible to convert
one sample PGO format to another.
The only format that is currently not working is 'gcc'. I still need to
implement support for it in lib/ProfileData.
The changes in the sample profile support classes are needed for the
merge operation.
Reviewers: bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6065
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221032 91177308-0d34-0410-b5e6-96231b3b80d8
The also-emit-llvm option only supported getting the IR before optimizations.
This patch replaces it with a more generic save-temps option that saves the IR
both before and after optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220885 91177308-0d34-0410-b5e6-96231b3b80d8
For example, MS PSDK is not expected to have <cxxabi.h>.
You should introduce the new feature in lit.cfg corresponding to HAVE_CXXABI_H if you would like to test demangler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220840 91177308-0d34-0410-b5e6-96231b3b80d8
This prints disassembly comments for Objective-C references to CFStrings,
Selectors, Classes and method calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220500 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-symbolizer will consult one of the .dSYM paths passed via -dsym-hint
if it fails to find the .dSYM bundle at the default location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220004 91177308-0d34-0410-b5e6-96231b3b80d8
The plugin API doesn't have the notion of linkonce, only weak. It is up to the
plugin to figure out if a symbol used only for the symbol table can be dropped.
In particular, it has to avoid dropping a linkonce_odr selected by gold if there
is also a weak_odr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219188 91177308-0d34-0410-b5e6-96231b3b80d8
The call to copyAttributesFrom will copy the visibility, which might assert
if it were to produce something invalid like "internal hidden". We avoid it
by first creating the replacement with the original linkage and then setting
it to internal affter the call to copyAttributesFrom.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219184 91177308-0d34-0410-b5e6-96231b3b80d8
When creating an internal function replacement for use in an alias we were
not remapping the argument uses in the instructions to point to the new
arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219177 91177308-0d34-0410-b5e6-96231b3b80d8
Codeview line tables for functions in different sections refer to a common
STRING_TABLE_SUBSECTION for filenames.
This happens when building with -Gy or with inline functions with MSVC.
Original patch by Jeff Muizelaar!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219125 91177308-0d34-0410-b5e6-96231b3b80d8
This patch defines a new iterator for the imported symbols.
Make a change to COFFDumper to use that iterator to print
out imported symbols and its ordinals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218915 91177308-0d34-0410-b5e6-96231b3b80d8
When the flag is given, the command prints out the COFF import table.
Currently only the import table directory will be printed.
I'm going to make another patch to print out the imported symbols.
The implementation of import directory entry iterator in
COFFObjectFile.cpp was buggy. This patch fixes that too.
http://reviews.llvm.org/D5569
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218891 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a test which checks that the functions defined in header files will get associated with the header files rather than the source files in the reports.
Differential Revision: http://reviews.llvm.org/D5489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218673 91177308-0d34-0410-b5e6-96231b3b80d8
So in fully linked images when a call is made through a stub it now gets a
comment like the following in the disassembly:
callq 0x100000f6c ## symbol stub for: _printf
indicating the call is to a symbol stub and which symbol it is for. This is
done for branch reference types and seeing if the branch target is in a stub
section and if so using the indirect symbol table entry for that stub and
using that symbol table entries symbol name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218546 91177308-0d34-0410-b5e6-96231b3b80d8
If we have multiple coverage counts for the same segment, we need to
add them up rather than arbitrarily choosing one. This fixes that and
adds a test with template instantiations to exercise it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218432 91177308-0d34-0410-b5e6-96231b3b80d8
get the literal string “Hello world” printed as a comment on the instruction
that loads the pointer to it. For now this is just for x86_64. So for object
files with relocation entries it produces things like:
leaq L_.str(%rip), %rax ## literal pool for: "Hello world\n"
and similar for fully linked images like executables:
leaq 0x4f(%rip), %rax ## literal pool for: "Hello world\n"
Also to allow testing against darwin’s otool(1), I hooked up the existing
-no-show-raw-insn option to the Mach-O parser code, added the new Mach-O
only -full-leading-addr option to match otool(1)'s printing of addresses and
also added the new -print-imm-hex option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218423 91177308-0d34-0410-b5e6-96231b3b80d8
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218408 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218407 91177308-0d34-0410-b5e6-96231b3b80d8
For biendian targets like ARM and AArch64, it is useful to have the
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218391 91177308-0d34-0410-b5e6-96231b3b80d8
This change fixes the ARM and AArch64 relocation visitors in
RelocVisitor. They were unconditionally assuming the object data are
little-endian. Tests have been added to ensure that the
llvm-dwarfdump utility does not crash when processing big-endian
object files.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218389 91177308-0d34-0410-b5e6-96231b3b80d8
Since llvm-cov shows the source file in its output, be careful about
potentially matching the check lines themselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218138 91177308-0d34-0410-b5e6-96231b3b80d8
Uncovered lines in the middle of a covered region weren't being shown
when filtering to a particular function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218109 91177308-0d34-0410-b5e6-96231b3b80d8
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218078 91177308-0d34-0410-b5e6-96231b3b80d8
First step done in this commit is to get flush out enough of the
SymbolizerGetOpInfo() routine to symbolic an X86_64 hello world .o and
its loading of the literal string and call to printf. Also the code to
symbolicate the X86_64_RELOC_SUBTRACTOR relocation and a test is also
added to show a slightly more complicated case.
Next will be to flush out enough of SymbolizerSymbolLookUp() to get the
literal string “Hello world” printed as a comment on the instruction that load
the pointer to it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217893 91177308-0d34-0410-b5e6-96231b3b80d8
Teach yaml2obj how to make a bigobj COFF file. Like the rest of LLVM,
we automatically decide whether or not to use regular COFF or bigobj
COFF on the fly depending on how many sections the resulting object
would have.
This ends the task of adding bigobj support to LLVM.
N.B. This was tested by forcing yaml2obj to be used in bigobj mode
regardless of the number of sections. While a dedicated test was
written, the smallest I could make it was 36 MB (!) of yaml and it still
took a significant amount of time to execute on a powerful machine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217858 91177308-0d34-0410-b5e6-96231b3b80d8
This finishes the ability of llvm-objdump to print out all information from
the LC_DYLD_INFO load command.
The -bind option prints out symbolic references that dyld must resolve
immediately.
The -lazy-bind option prints out symbolc reference that are lazily resolved on
first use.
The -weak-bind option prints out information about symbols which dyld must
try to coalesce across images.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217853 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the debug output of the llvm-cov tool to consistently
write to stderr, and moves the highlighting output closer to where
it's relevant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217838 91177308-0d34-0410-b5e6-96231b3b80d8
In r217746, though it was supposed to be NFC, I broke llvm-cov's
handling of showing regions without showing counts. This should've
shown up in the existing tests, except they were checking debug output
that was displayed regardless of what was actually output. I've moved
the relevant debug output to a more appropriate place so that the
tests catch this kind of thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217835 91177308-0d34-0410-b5e6-96231b3b80d8
Similar to my previous -exports-trie option, the -rebase option dumps info from
the LC_DYLD_INFO load command. The rebasing info is a list of the the locations
that dyld needs to adjust if a mach-o image is not loaded at its preferred
address. Since ASLR is now the default, images almost never load at their
preferred address, and thus need to be rebased by dyld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217709 91177308-0d34-0410-b5e6-96231b3b80d8
The raw profiles that are generated in compiler-rt always add padding
so that each profile is aligned, so we can simply treat files that
don't have this property as malformed.
Caught by Alexey's new ubsan bot. Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217708 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a call to sys::fs::equivalent that should've been to
CodeCoverageTool::equivalentFiles, which lets us restore the test of
r217476 that was removed in r217478.
This reverts r217478, but the test works this time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217646 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for reading the "bigobj" variant of COFF produced by
cl's /bigobj and mingw's -mbig-obj.
The most significant difference that bigobj brings is more than 2**16
sections to COFF.
bigobj brings a few interesting differences with it:
- It doesn't have a Characteristics field in the file header.
- It doesn't have a SizeOfOptionalHeader field in the file header (it's
only used in executable files).
- Auxiliary symbol records have the same width as a symbol table entry.
Since symbol table entries are bigger, so are auxiliary symbol
records.
Write support will come soon.
Differential Revision: http://reviews.llvm.org/D5259
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217496 91177308-0d34-0410-b5e6-96231b3b80d8
It appears that the -filename-equivalence option for testing llvm-cov
doesn't work correctly with -show-expansions. I'm reverting this test
to get the bots green while I look into fixing that.
This partially reverts r217476
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217478 91177308-0d34-0410-b5e6-96231b3b80d8
This is the plugin version of pr20882.
This handles the case of every common symbol being in the IR. We will need some
support from gold to handle the case where some symbols are in ELF and some in
the IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217458 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the printing of more load commands, so that the normal load commands
in a typical X86 Mach-O executable can all be printed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217172 91177308-0d34-0410-b5e6-96231b3b80d8
MachOObjectFile in lib/Object currently has no support for parsing the rebase,
binding, and export information from the LC_DYLD_INFO load command in final
linked mach-o images. This patch adds support for parsing the exports trie data
structure. It also adds an option to llvm-objdump to dump that export info.
I did the exports parsing first because it is the hardest. The information is
encoded in a trie structure, but the standard ObjectFile way to inspect content
is through iterators. So I needed to make an iterator that would do a
non-recursive walk through the trie and maintain the concatenation of edges
needed for the current string prefix.
I plan to add similar support in MachOObjectFile and llvm-objdump to
parse/display the rebasing and binding info too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216808 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the printing of the LC_SEGMENT load command and sections,
LC_SYMTAB and LC_DYSYMTAB load commands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216795 91177308-0d34-0410-b5e6-96231b3b80d8
There are two parts to this. First, the plugin needs to tell gold the comdat by
setting comdat_key.
What gets things a bit more complicated is that gold only seems
symbols. In particular, if A is an alias to B, it only sees the symbols
A and B. It can then ask us to keep symbol A but drop symbol B. What
we have to do instead is to create an internal version of B and make A
an alias to that.
At some point some of this logic should be moved to lib/Linker so that
we don't map a Constant to an internal version just to have lib/Linker
map that again to the destination module.
The reason for implementing this in tools/gold for now is simplicity.
With it in place it should be possible to update clang to use comdats
for constructors and destructors on ELF without breaking the LTO
bootstrap. Once that is done I intend to come back and improve the
interface lib/Linker exposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216302 91177308-0d34-0410-b5e6-96231b3b80d8
This commit expands llvm-cov's functionality by adding support for a new code coverage
tool that uses LLVM's coverage mapping format and clang's instrumentation based profiling.
The gcov compatible tool can be invoked by supplying the 'gcov' command as the first argument,
or by modifying the tool's name to end with 'gcov'.
Differential Revision: http://reviews.llvm.org/D4445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216300 91177308-0d34-0410-b5e6-96231b3b80d8
There is a fundamental difference between how the gold API and lib/LTO view
the LTO process.
The gold API talks about a particular symbol in a particular file. The lib/LTO
API talks about a symbol in the merged module.
The merged module is then defined in terms of the IR semantics. In particular,
a linkonce_odr GV is only copied if it is used, since it is valid to drop
unused linkonce_odr GVs.
In the testcase in pr19901 both properties collide. What happens is that gold
asks us to keep a particular linkonce_odr symbol, but the IR linker doesn't
copy it to the merged module and we never have a chance to ask lib/LTO to keep
it.
This patch fixes it by having a more direct implementation of the gold API. If
it asks us to keep a symbol, we change the linkage so it is not linkonce. If it
says we can drop a symbol, we do so. All of this before we even send the module
to lib/Linker.
Since now we don't have to produce LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN,
during symbol resolution we can use a temporary LLVMContext and do lazy
module loading. This allows us to keep the minimum possible amount of
allocated memory around. This should also allow as much parallelism as
we want, since there is no shared context.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216215 91177308-0d34-0410-b5e6-96231b3b80d8
file with -macho, the Mach-O specific object file parser option.
After some discussion I chose to do this implementation contained in the logic
of llvm-objdump’s MachODump.cpp using a second disassembler for thumb when
needed and with updates mostly contained in the MachOObjectFile class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215931 91177308-0d34-0410-b5e6-96231b3b80d8
I initially thought I could implement COMDATs with aliases by just
internalizing GVs instead of dropping them. This is a counter
example: Internalizing one of the @a would make @b and @c point
to different variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215447 91177308-0d34-0410-b5e6-96231b3b80d8
LLD needs them, and it's good to be able to print them properly when
our object dumpers encounter them.
Patch by Daniel Stewart.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215352 91177308-0d34-0410-b5e6-96231b3b80d8
The timestamp meant these files changed with each invocation of
relocs.py, confusing matters when we add relocations and need to
update the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215350 91177308-0d34-0410-b5e6-96231b3b80d8
Also make the disassembler created with the Mach-O parser (the -m option)
pick up the Target specific attributes specified with -mattr option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215032 91177308-0d34-0410-b5e6-96231b3b80d8
This updates the instrumentation based profiling format so that when
we have multiple functions with the same name (but different function
hashes) we keep all of them instead of rejecting the later ones.
There are a number of scenarios where this can come up where it's more
useful to keep multiple function profiles:
* Name collisions in unrelated libraries that are profiled together.
* Multiple "main" functions from multiple tools built against a common
library.
* Combining profiles from different build configurations (ie, asserts
and no-asserts)
The profile format now stores the number of counters between the hash
and the counts themselves, so that multiple sets of counts can be
stored. Since this is backwards incompatible, I've bumped the format
version and added some trivial logic to skip this when reading the old
format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214585 91177308-0d34-0410-b5e6-96231b3b80d8
In some places we've been using different suffixes for the different
file formats involved in instrprof, but in others we've just
ambiguously used .profdata. Update the test files to indicate the
types of file more obviously.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214357 91177308-0d34-0410-b5e6-96231b3b80d8
This moves some tests around to make it clearer what's being tested,
and adds very rudimentary comment syntax to the text input format to
make specifying this kind of test a little bit simpler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214235 91177308-0d34-0410-b5e6-96231b3b80d8
These are only used when the 'ld' in the path is gold and the plugin has
been built, but it is already a start to make sure we don't regress features
that cannot be tested with llvm-lto.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214058 91177308-0d34-0410-b5e6-96231b3b80d8
This tool's job is to dump the vtables inside object files. It is
currently limited to MS ABI vf- and vb-tables but it will eventually
support Itanium-style v-tables as well.
Differential Revision: http://reviews.llvm.org/D4584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213903 91177308-0d34-0410-b5e6-96231b3b80d8
The size of the uninitialized sections, like BSS, can exceed the size of
the object file.
Do not attempt to grab the contents of such sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212953 91177308-0d34-0410-b5e6-96231b3b80d8
There were two issues here:
1. At the very least, scattered relocations cannot use the same code to
determine the corresponding symbol being referred to. For some reason we
pretend there is no symbol, even when one actually exists in the symtab, so to
match this behaviour getRelocationSymbol should simply return symbols_end for
scattered relocations.
2. Printing "-" when we can't get a symbol (including the scattered case, but
not exclusively), isn't that helpful. In both cases there *is* interesting
information in that field, so we should print it. As hex will do.
Small part of rdar://problem/17553104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212332 91177308-0d34-0410-b5e6-96231b3b80d8
Make llvm-cov compatible with gcov for cases where multiple files are
specified on the command line. That is, loop over each one and report
coverage, and report errors on stderr only rather than via return
code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211959 91177308-0d34-0410-b5e6-96231b3b80d8
All tests in test/tools/llvm-cov fail on big-endian targets and are
supposed to be XFAILed there. However, including "powerpc64" in the
XFAIL line is now incorrect, since that matches both powerpc64- and
powerpc64le- targets, and the tests pass on the latter.
Update the XFAIL lines to use powerpc64- instead (like mips64-).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211172 91177308-0d34-0410-b5e6-96231b3b80d8
Allow multiple raw profiles to coexist in a single .profraw file,
given the following conditions:
- Zero padding at the end of or between profiles will be skipped.
- Each profile must start with a valid header.
- Mixing endianness or pointer sizes in concatenated profiles files is
not allowed.
This is needed to handle cases where a program's shared libraries are
profiled as well as the main executable itself, as we'll need to emit
each executable's counters. Combining the tables in the runtime would
be expensive for the instrumented program.
rdar://16918688
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208938 91177308-0d34-0410-b5e6-96231b3b80d8
If the source files referenced by a gcno file are missing, gcov
outputs a coverage file where every line is simply /*EOF*/. This also
occurs for lines in the coverage that are past the end of a file that
is found.
This change mimics gcov.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208149 91177308-0d34-0410-b5e6-96231b3b80d8
In gcov, there's a -n/--no-output option, which disables the writing
of any .gcov files, so that it emits only the summary info on stdout.
This implements the same behaviour in llvm-cov.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208148 91177308-0d34-0410-b5e6-96231b3b80d8
Reading line tables in llvm-cov was pretty broken, but would happen to
work as long as no line in the table was 0. It's not clear to me
whether a line of zero *should* show up in these tables, but deciding
to read a string in the middle of the line table is certainly the
wrong thing to do if it does.
I've also added some comments, as trying to figure out what this block
of code was doing was fairly unpleasant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207866 91177308-0d34-0410-b5e6-96231b3b80d8
GCOV provides an option to prepend output file names with the source
file name, to disambiguate between covered data that's included from
multiple sources. Add a flag to llvm-cov that does the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207035 91177308-0d34-0410-b5e6-96231b3b80d8
We fseek on our output file in llvm-profdata, which errors on some
systems. Avoid getting into the situation by writing to /dev/null
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206670 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for an indexed instrumentation based profiling
format, which is just a small header and an on disk hash table. This
format will be used by clang's -fprofile-instr-use= for PGO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206656 91177308-0d34-0410-b5e6-96231b3b80d8
Once the auxiliary fields relating to the filename have been inspected, any
following auxiliary fields need not be visited as they have been consumed (the
following fields comprise the filepath as a single unit).
Adjust the test to catch this even if ASAN is not enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206190 91177308-0d34-0410-b5e6-96231b3b80d8
If a filename is a multiple of 18 characters, there will be no null-terminator.
This will result in an invalid access by the constructed StringRef. Add a test
case to exercise this and fix that handling. Address this same vulnerability in
llvm-readobj as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206145 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for file auxiliary symbol entries in COFF symbol tables. A COFF
symbol table with a FILE entry is followed by sizeof(__FILE__) / 18 auxiliary
symbol records which contain the filename. Read them and form the original
filename that the record contains. Then display the name in the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206126 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-cov tests are sensitive to line number changes, so putting this
at the end will limit churn when we fix the XFAIL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204871 91177308-0d34-0410-b5e6-96231b3b80d8
Functions may in an instrumented binary but not in the original source
when they're inserted by the compiler or the runtime. These functions
aren't meaningful to the user, so teach llvm-cov to skip over them
instead of crashing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204863 91177308-0d34-0410-b5e6-96231b3b80d8
Since the profile can come from 32-bit machines, we need to check the
pointer size. Change the magic number to facilitate this.
Adds tests for reading 32-bit and 64-bit binaries (both big- and
little-endian). The tests write a binary using printf in RUN lines
(like raw-magic-but-no-header.test). Assuming the bots don't complain,
this seems like a better way forward for testing RawInstrProfReader than
committing binary files.
<rdar://problem/16400648>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204557 91177308-0d34-0410-b5e6-96231b3b80d8
Some text shows up on stderr when using guard malloc, and this test
was trying to treat that as input to llvm-profdata show. There's no
reason to pipe stderr into show at all here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204549 91177308-0d34-0410-b5e6-96231b3b80d8
Cleanup the current binary testcase for profile data.
- Rename it to something more specific.
- Remove the text comparison.
- Check the output of llvm-profdata show.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204518 91177308-0d34-0410-b5e6-96231b3b80d8
Include non-text characters in the magic number so that text files can't
match.
<rdar://problem/15950346>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204513 91177308-0d34-0410-b5e6-96231b3b80d8
Read a raw binary profile that corresponds to a memory dump from the
runtime profile.
The test is a binary file generated from
cfe/trunk/test/Profile/c-general.c with the new compiler-rt runtime and
the matching text version of the input. It includes instructions on how
to regenerate.
<rdar://problem/15950346>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204496 91177308-0d34-0410-b5e6-96231b3b80d8
This isn't a format we'll want to write out in practice, but moving it
to the writer library simplifies llvm-profdata and isolates it from
further changes to the format.
This also allows us to update the tests to not rely on the text output
format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204489 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the ProfileData library and updates llvm-profdata to
use this library for reading profiles. InstrProfReader is an abstract
base class that will be subclassed for both the raw instrprof data
from compiler-rt and the efficient instrprof format that will be used
for PGO.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204482 91177308-0d34-0410-b5e6-96231b3b80d8
NumberOfRelocations field in COFF section table is only 16-bit wide. If an
object has more than 65535 relocations, the number of relocations is stored
to VirtualAddress field in the first relocation field, and a special flag
(IMAGE_SCN_LNK_NRELOC_OVFL) is set to Characteristics field.
In test we cheated a bit. I made up a test file so that it has
IMAGE_SCN_LNK_NRELOC_OVFL flag but the number of relocations is much smaller
than 65535. This is to avoid checking in a large test file just to test a
file with many relocations.
Differential Revision: http://llvm-reviews.chandlerc.com/D3139
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204418 91177308-0d34-0410-b5e6-96231b3b80d8
Add the Windows COFF ARM object file magic. This enables the LLVM tools to
interact with COFF object files for Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203761 91177308-0d34-0410-b5e6-96231b3b80d8
Chandler voiced some concern with checking this in without some
discussion first. Reverting for now.
This reverts r203703, r203704, r203708, and 203709.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203723 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces the llvm-profdata tool with a version that uses the
recently introduced Profile library. The new tool has the ability to
generate and summarize profdata files as well as merging them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203704 91177308-0d34-0410-b5e6-96231b3b80d8
Unwind info contents were indented at the same level as function table
contents. That's a bit confusing because the unwind info is pointed by
function table. In other places we usually increment indentation depth
by one when dereferncing a pointer.
This patch also removes extraneous newlines between function tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202879 91177308-0d34-0410-b5e6-96231b3b80d8