actuall addresses in a .o file, so it is better to let the MachO writer compute
it.
This is good for two reasons. First, areas that shouldn't care about
addresses now don't have access to it. Second, the layout of each section
is independent. I should use this in a subsequent commit to speed it up.
Most of the patch is just removing the section address computation. The two
interesting parts are the change on how we handle padding in the end
of sections and how MachO can get the address of a-b when a and b are in
different sections.
Since now the expression evaluation normally doesn't know the section address,
it will think that a-b needs relocation and let the MachO writer know. Once
it has computed the section addresses, it calls back the expression evaluation
with the section addresses to resolve these expressions.
The remaining problem is the handling of padding. Currently it will create
a special alignment fragment at the end. Since that fragment doesn't update
the alignment of the section, it needs the real address to be computed.
Since now the layout will not compute a-b with a and b in different sections,
the only effect that the special alignment fragment has is update the
address size of the section. This can also be done by the MachO writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121076 91177308-0d34-0410-b5e6-96231b3b80d8
they should be in the symbol table or not. Instead of "guessing", just compute
the symbol table after the relocations are known.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115619 91177308-0d34-0410-b5e6-96231b3b80d8
resolved or not. Different object files have different restrictions and
different native assemblers have different idiosyncrasies we want to emulate
for now.
Move the existing MachO logic to the new place and implement an ELF one that
gets fixups to globals right.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115131 91177308-0d34-0410-b5e6-96231b3b80d8
If the size of the string is greater than the zero fill size, the function will attempt to write a very large string of zeros to the object file (~4GB on 32 bit platforms). This assertion will catch the scenario and crash the program before the write occurs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104334 91177308-0d34-0410-b5e6-96231b3b80d8