and T->isPointerTy(). Convert most instances of the first form to the second form.
Requested by Chris.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96344 91177308-0d34-0410-b5e6-96231b3b80d8
as it also peeks at which registers are being used by other uses. This
makes LSR less sensitive to use-list order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96308 91177308-0d34-0410-b5e6-96231b3b80d8
with multiplication by constants distributed through, occasionally
those subexpressions can include both x and -x. For now, if this
condition is discovered within LSR, just prune such cases away,
as they won't be profitable. This fixes a "zero allocated in a
base register" assertion failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96177 91177308-0d34-0410-b5e6-96231b3b80d8
and add a doxygen comment.
Cache the phi entry to avoid doing tons of
PHINode::getBasicBlockIndex calls in the common case.
On my insane testcase from re2c, this speeds up CGP from
617.4s to 7.9s (78x).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96083 91177308-0d34-0410-b5e6-96231b3b80d8
bug fixes, and with improved heuristics for analyzing foreign-loop
addrecs.
This change also flattens IVUsers, eliminating the stride-oriented
groupings, which makes it easier to work with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95975 91177308-0d34-0410-b5e6-96231b3b80d8
block. Other blocks may have pointer cycles that will crash
basicaa and other alias analyses. In any case, there is no
point wasting cycles optimizing dead blocks. This fixes
rdar://7635088
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95852 91177308-0d34-0410-b5e6-96231b3b80d8
Initial skeleton and SCEVUnknown lowering implemented,
the rest should come relatively quickly. Move testcase
to new directory.
Move pass to right before SimplifyLibCalls - which is
moved down a bit so we can take advantage of a few opts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95628 91177308-0d34-0410-b5e6-96231b3b80d8
container data. This prevents it from holding onto dangling
pointers and potentially behaving unpredictably.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95409 91177308-0d34-0410-b5e6-96231b3b80d8
short-circuited conditions to AND/OR expressions, and those expressions
are often converted back to a short-circuited form in code gen. The
original source order may have been optimized to take advantage of the
expected values, and if we reassociate them, we change the order and
subvert that optimization. Radar 7497329.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95333 91177308-0d34-0410-b5e6-96231b3b80d8
The SRThreshold value makes perfect sense for checking if an entire aggregate
should be promoted to a scalar integer, but it is not so good for splitting
an aggregate into its separate elements. A struct may contain a large embedded
array along with some scalar fields that would benefit from being split apart
by SROA. Even if the total aggregate size is large, it may still be good to
perform SROA. Thus, the most important piece of this patch is simply moving
the aggregate size comparison vs. SRThreshold so that it guards only the
aggregate promotion.
We have also been checking the number of elements to decide if an aggregate
should be split up. The limit of "SRThreshold/4" seemed rather arbitrary,
and I don't think it's very useful to derive this limit from SRThreshold
anyway. I've collected some data showing that the current default limit of
32 (since SRThreshold defaults to 128) is a reasonable cutoff for struct
types. One thing suggested by the data is that distinguishing between structs
and arrays might be useful. There are (obviously) a lot more large arrays
than large structs (as measured by the number of elements and not the total
size -- a large array inside a struct still counts as a single element given
the way we do SROA right now). Out of 8377 arrays where we successfully
performed SROA while compiling a large set of benchmarks, only 16 of them had
more than 8 elements. And, for those 16 arrays, it's not at all clear that
SROA was actually beneficial. So, to offset the compile time cost of
investigating more large structs for SROA, the patch lowers the limit on array
elements to 8.
This fixes Apple Radar 7563690.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95224 91177308-0d34-0410-b5e6-96231b3b80d8
disabled by default. This divides the existing load PRE code into 2 phases:
first it checks that it is safe to move the load to each of the predecessors
where it is unavailable, and then if it is safe, the code is changed to move
the load. Radar 7571861.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95007 91177308-0d34-0410-b5e6-96231b3b80d8
unconditionally. Besides checking the offset, also check that the underlying
object is aligned as much as the load itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94875 91177308-0d34-0410-b5e6-96231b3b80d8
parameter with a default value, instead of just hardcoding it in the
implementation. The limit of MaxLookup = 6 was introduced in r69151 to fix
a performance problem with O(n^2) behavior in instcombine, but the scalarrepl
pass is relying on getUnderlyingObject to go all the way back to an AllocaInst.
Making the limit part of the method signature makes it clear that by default
the result is limited and should help avoid similar problems in the future.
This fixes pr6126.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94433 91177308-0d34-0410-b5e6-96231b3b80d8
for arbitrary terminators in predecessors, don't assume
it is a conditional or uncond branch. The testcase shows
an example where they can happen with switches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94323 91177308-0d34-0410-b5e6-96231b3b80d8
handle the case when we can infer an input to the xor
from all inputs that agree, instead of going into an
infinite loop. Another part of PR6199
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94321 91177308-0d34-0410-b5e6-96231b3b80d8
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94164 91177308-0d34-0410-b5e6-96231b3b80d8
loop-variant components, adds must be inserted after the increment.
Keep track of the increment position for this case, and insert
these adds in the correct location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94110 91177308-0d34-0410-b5e6-96231b3b80d8
operands exceeds the number of registers used in the initial
solution, as that wouldn't lead to a profitable solution anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94107 91177308-0d34-0410-b5e6-96231b3b80d8
This new version is much more aggressive about doing "full" reduction in
cases where it reduces register pressure, and also more aggressive about
rewriting induction variables to count down (or up) to zero when doing so
reduces register pressure.
It currently uses fairly simplistic algorithms for finding reuse
opportunities, but it introduces a new framework allows it to combine
multiple strategies at once to form hybrid solutions, instead of doing
all full-reduction or all base+index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94061 91177308-0d34-0410-b5e6-96231b3b80d8
than the scaled register. This makes it more likely that subsequent
AddrModeMatcher queries will match the new address the same way as the
old, instead of accidentally matching what had been the base register
as the new scaled register, and then failing to match the scaled register.
This fixes some problems with address-mode sinking multiple muls into a
block, which will be a lot more common with some upcoming
LoopStrengthReduction changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93935 91177308-0d34-0410-b5e6-96231b3b80d8
are the same. I had already fixed a similar problem where the source and
destination were different bitcasts derived from the same alloca, but the
previous fix still did not handle the case where both operands are exactly
the same value. Radar 7552893.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93848 91177308-0d34-0410-b5e6-96231b3b80d8
in JT.
2) When cloning blocks for PHI or xor conditions, use
instsimplify to simplify the code as we go. This allows us to
squish common cases early in JT which opens up opportunities for
subsequent iterations, and allows it to completely simplify the
testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93253 91177308-0d34-0410-b5e6-96231b3b80d8
condition is a xor with a phi node. This eliminates nonsense
like this from 176.gcc in several places:
LBB166_84:
testl %eax, %eax
- setne %al
- xorb %cl, %al
- notb %al
- testb $1, %al
- je LBB166_85
+ je LBB166_69
+ jmp LBB166_85
This is rdar://7391699
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93221 91177308-0d34-0410-b5e6-96231b3b80d8