Now even the small structures could be passed within byval (small enough
to be stored in GPRs).
In regression tests next function prototypes are checked:
PR15293:
%artz = type { i32 }
define void @foo(%artz* byval %s)
define void @foo2(%artz* byval %s, i32 %p, %artz* byval %s2)
foo: "s" stored in R0
foo2: "s" stored in R0, "s2" stored in R2.
Next AAPCS rules are checked:
5.5 Parameters Passing, C.4 and C.5,
"ParamSize" is parameter size in 32bit words:
-- NSAA != 0, NCRN < R4 and NCRN+ParamSize > R4.
Parameter should be sent to the stack; NCRN := R4.
-- NSAA != 0, and NCRN < R4, NCRN+ParamSize < R4.
Parameter stored in GPRs; NCRN += ParamSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181148 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for matching 'ordered' and 'unordered' floating point min/max
constructs.
In LLVM we can express min/max functions as a combination of compare and select.
We have support for matching such constructs for integers but not for floating
point. In floating point math there is no total order because of the presence of
'NaN'. Therefore, we have to be careful to preserve the original fcmp semantics
when interpreting floating point compare select combinations as a minimum or
maximum function. The resulting 'ordered/unordered' floating point maximum
function has to select the same value as the select/fcmp combination it is based
on.
ordered_max(x,y) = max(x,y) iff x and y are not NaN, y otherwise
unordered_max(x,y) = max(x,y) iff x and y are not NaN, x otherwise
ordered_min(x,y) = min(x,y) iff x and y are not NaN, y otherwise
unordered_min(x,y) = min(x,y) iff x and y are not NaN, x otherwise
This matches the behavior of the underlying select(fcmp(olt/ult/.., L, R), L, R)
construct.
Any code using this predicate has to preserve this semantics.
A follow-up patch will use this to implement floating point min/max reductions
in the vectorizer.
radar://13723044
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181143 91177308-0d34-0410-b5e6-96231b3b80d8
The intended semantics mirror autoconf, where the user is able to
specify a host triple, but if it's left to the build system then
"config.guess" is invoked for the default.
This also renames the LLVM_HOSTTRIPLE define to LLVM_HOST_TRIPLE to
fit in with the style of the surrounding defines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181112 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we hava a convinient place to keep it, remeber the set of
identified structs as we merge modules.
This speeds up the linking of all the bitcode files in clang with the
gold plugin and -plugin-opt=emit-llvm (i.e., link only, no codegen) from
5:25 minutes to 13.6 seconds!
Patch by Xiaofei Wan!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181104 91177308-0d34-0410-b5e6-96231b3b80d8
Update comments, fix * placement, fix method names that are not
used in clang, add a linkInModule that takes a Mode and put it
in Linker.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181099 91177308-0d34-0410-b5e6-96231b3b80d8
The linker is now responsible only for actually linking the modules, it
is up to the clients to create and destroy them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181098 91177308-0d34-0410-b5e6-96231b3b80d8
Build attribute sections can now be read if they exist via ELFObjectFile, and
the llvm-readobj tool has been extended with an option to dump this information
if requested. Regression tests are also included which exercise these features.
Also update the docs with a fixed ARM ABI link and a new link to the Addenda
which provides the build attributes specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181009 91177308-0d34-0410-b5e6-96231b3b80d8
Another step towards reinstating the SystemZ backend. Tests will be
included in the main backend patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181008 91177308-0d34-0410-b5e6-96231b3b80d8
the "identifier" parsed by the frontend callback by skipping forward
until we've consumed a token that ends at the point dictated by the
callback.
In addition, inform the callback when it's parsing an unevaluated
operand (e.g. mov eax, LENGTH A::x) as opposed to an evaluated one
(e.g. mov eax, [A::x]).
This commit depends on a clang commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180978 91177308-0d34-0410-b5e6-96231b3b80d8
to emitted instructions. Use this if you want an instruction to be
counted towards the prologue or if there is no useful source location.
rdar://problem/13442648
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180929 91177308-0d34-0410-b5e6-96231b3b80d8
CodeModel: It's now possible to create an MCJIT instance with any CodeModel you like. Previously it was only possible to
create an MCJIT that used CodeModel::JITDefault.
EnableFastISel: It's now possible to turn on the fast instruction selector.
The CodeModel option required some trickery. The problem is that previously, we were ensuring future binary compatibility in
the MCJITCompilerOptions by mandating that the user bzero's the options struct and passes the sizeof() that he saw; the
bindings then bzero the remaining bits. This works great but assumes that the bitwise zero equivalent of any field is a
sensible default value.
But this is not the case for LLVMCodeModel, or its internal equivalent, llvm::CodeModel::Model. In both of those, the default
for a JIT is CodeModel::JITDefault (or LLVMCodeModelJITDefault), which is not bitwise zero.
Hence this change introduces LLVMInitializeMCJITCompilerOptions(), which will initialize the user's options struct with
defaults. The user will use this in the same way that they would have previously used memset() or bzero(). MCJITCAPITest.cpp
illustrates the change, as does the comment in ExecutionEngine.h.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180893 91177308-0d34-0410-b5e6-96231b3b80d8
the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180881 91177308-0d34-0410-b5e6-96231b3b80d8
The cause of the windows failures was fixed by r180791. Revert to the state
after Sabre's original revert.
Original message:
revert r179735, it has no testcases, and doesn't really make sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180844 91177308-0d34-0410-b5e6-96231b3b80d8
register-indirect address with an offset of 0.
It used to be that a DBG_VALUE is a register-indirect value if the offset
(operand 1) is nonzero. The new convention is that a DBG_VALUE is
register-indirect if the first operand is a register and the second
operand is an immediate. For plain registers use the combination reg, reg.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180816 91177308-0d34-0410-b5e6-96231b3b80d8
The actual storage was already using unsigned, but the interface was using
uint64_t. This is wasteful on 32 bits and looks to be the root causes of
a miscompilation on Windows where a value was being sign extended to 64bits
to compare with the result of getSlotIndex.
Patch by Pasi Parviainen!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180791 91177308-0d34-0410-b5e6-96231b3b80d8
The `llvm.tls_init_funcs' (created by the front-end) holds pointers to the TLS
initialization functions. These need to be placed into the correct section so
that they are run before `main()'.
<rdar://problem/13733006>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180737 91177308-0d34-0410-b5e6-96231b3b80d8
For regular object files this is only meaningful for common symbols. An object
file format with direct support for atoms should be able to provide alignment
information for all symbols.
This replaces getCommonSymbolAlignment and fixes
test-common-symbols-alignment.ll on darwin. This also includes a fix to
MachOObjectFile::getSymbolFlags. It was marking undefined symbols as common
(already tested by existing mcjit tests now that it is used).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180736 91177308-0d34-0410-b5e6-96231b3b80d8
This un-reverts r179735 and reverts commit r180574.
This fixes assertion failures for me locally and should fix the failures
on Windows reported widely on llvm-dev. We should check if the bots
caught this and if so why not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180722 91177308-0d34-0410-b5e6-96231b3b80d8
Re-submitting with fix for OCaml dependency problems (removing dependency on SectionMemoryManager when it isn't used).
Patch by Fili Pizlo
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180720 91177308-0d34-0410-b5e6-96231b3b80d8
This seems to me an obvious place to allow target passes to annotate
memory operations. There are plenty of bits, and I'm not aware of
another good way for early target passes to propagate hints along to
later passes. Target independent transforms can simply preserve them,
the way they preserve the other flags. Like MachineMemOperands in
general, if the target flags are lost we must still generate correct
code.
This has lots of uses, but I want this flexibility now to make it
easier to work with the new MachineTraceMetrics
analysis. MachineTraceMetrics can gather a lot of information about
instructions based on the surrounding code. This information can be
used to influence postRA machine passes that don't work on SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180666 91177308-0d34-0410-b5e6-96231b3b80d8
to determine whether or not we're on a darwin platform for debug code
emitting.
Solves the problem of a module with no triple on the command line
and no triple in the module using non-gdb ok features on darwin. Fix
up the member-pointers test to check the correct things for cross
platform (DW_FORM_flag is a good prefix).
Unfortunately no testcase because I have no ideas how to test something
without a triple and without a triple in the module yet check
precisely on two platforms. Ideas welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180660 91177308-0d34-0410-b5e6-96231b3b80d8
We switch the order of offset and field type to make TBAAStructType node
(name, parent node, offset) similar to scalar TBAA node (name, parent node).
TypeIsImmutable is added to TBAAStructTag node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180654 91177308-0d34-0410-b5e6-96231b3b80d8
Clarify documentation and API to make the difference between register and
register-indirect addressed locations more explicit. Put in a comment
to point out that with the current implementation we cannot specify
a register-indirect location with offset 0 (a breg 0 in DWARF).
No functionality change intended.
rdar://problem/13658587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180641 91177308-0d34-0410-b5e6-96231b3b80d8
For Mach-O there were 2 implementations for parsing object files. A
standalone llvm/Object/MachOObject.h and llvm/Object/MachO.h which
implements the generic interface in llvm/Object/ObjectFile.h.
This patch adds the missing features to MachO.h, moves macho-dump to
use MachO.h and removes ObjectFile.h.
In addition to making sure that check-all is clean, I checked that the
new version produces exactly the same output in all Mach-O files in a
llvm+clang build directory (including executables and shared
libraries).
To test the performance, I ran macho-dump over all the files in a
llvm+clang build directory again, but this time redirecting the output
to /dev/null. Both the old and new versions take about 4.6 seconds
(2.5 user) to finish.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180624 91177308-0d34-0410-b5e6-96231b3b80d8