This teaches the min/max idiom detector in ValueTracking to see through
casts such as SExt/ZExt/Trunc. SCEV can already do this, so we're bringing
non-SCEV analyses up to the same level.
The returned LHS/RHS will not match the type of the original SelectInst
any more, so a CastOp is returned too to inform the caller how to
convert to the SelectInst's type.
No in-tree users yet; this will be used by InstCombine in a followup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237452 91177308-0d34-0410-b5e6-96231b3b80d8
collectUpperBound hits an assertion when the back edge count is wider then the desired type.
If that happens, truncate the backedge count.
Patch by Philip Pfaffe!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237439 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Extract method haveNoCommonBitsSet so that we don't have to duplicate this logic in
InstCombine and SeparateConstOffsetFromGEP.
This patch also makes SeparateConstOffsetFromGEP more precise by passing
DominatorTree to computeKnownBits.
Test Plan: value-tracking-domtree.ll that tests ValueTracking indeed leverages dominating conditions
Reviewers: broune, meheff, majnemer
Reviewed By: majnemer
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9734
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237407 91177308-0d34-0410-b5e6-96231b3b80d8
Function 'ConstantFoldScalarCall' (in ConstantFolding.cpp) works under the
wrong assumption that a call to 'convert.from.fp16' returns a value of
type 'float'.
However, intrinsic 'convert.from.fp16' can be overloaded; for example, we
can call 'convert.from.fp16.f64' to convert from half to double; etc.
Before this patch, the following example would have triggered an assertion
failure in opt (with -constprop):
```
define double @foo() {
entry:
%0 = call double @llvm.convert.from.fp16.f64(i16 0)
ret double %0
}
```
This patch fixes the problem in ConstantFolding.cpp. When folding a call to
convert.from.fp16, we perform a different kind of conversion based on the call
return type.
Added test 'Transform/ConstProp/convert-from-fp16.ll'.
Differential Revision: http://reviews.llvm.org/D9771
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237377 91177308-0d34-0410-b5e6-96231b3b80d8
This version doesn't need begin/end but can instead just take a type which has begin/end methods.
Use this to replace an eligible foreach loop in LoopInfo found by David Blaikie in r237224.
Reviewed by David Blaikie.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237301 91177308-0d34-0410-b5e6-96231b3b80d8
We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it.
Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237169 91177308-0d34-0410-b5e6-96231b3b80d8
ValueTracking.
This matching functionality is useful in more than just InstCombine, so
make it available in ValueTracking.
NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236998 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There are several unhandled edge cases in BasicAA's GetLinearExpression
method. This changes fixes outstanding issues, including zext / sext of
a constant with the sign bit set, and the refusal to decompose zexts or
sexts of wrapping arithmetic.
Test Plan: Unit tests added in //q.ext.ll//.
Patch by Nick White.
Reviewers: hfinkel, sanjoy
Reviewed By: hfinkel, sanjoy
Subscribers: sanjoy, llvm-commits, hfinkel
Differential Revision: http://reviews.llvm.org/D6682
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236894 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This addresses PR 22718. When branch weights are too large, they were
being clamped to the range [1, MaxWeightForBB]. But this clamping is
only applied to edges that go outside the range, so it distorts the
relative branch probabilities.
This patch changes the weight calculation to scale every branch so the
relative probabilities are preserved. The scaling is done differently
now. First, all the branch weights are added up, and if the sum exceeds
32 bits, it computes an integer scale to bring all the weights within
the range.
The patch fixes an existing test that had slightly wrong branch
probabilities due to the previous clamping. It now gets branch weights
scaled accordingly.
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236750 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When computing branch weights in BPI, we used to disallow branches with
weight 0. This is a minor nuisance, because a branch with weight 0 is
different to "don't have information". In the context of
instrumentation, it may mean "never executed", in the context of
sampling, it means "never or seldom executed".
In allowing 0 weight branches, I ran into issues with the switch
expansion code in selection DAG. It is currently hardwired to not handle
branches with weight 0. To maintain the current behaviour, I changed it
to use 1 when it finds 0, but perhaps the algorithm needs changes to
tolerate branches with weight zero.
Reviewers: hansw
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236617 91177308-0d34-0410-b5e6-96231b3b80d8
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.
Differential Revision: http://reviews.llvm.org/D9515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236613 91177308-0d34-0410-b5e6-96231b3b80d8
It got this in some cases (if one of them was an identified object), but not in all cases.
This caused stores to undef to block load-forwarding in some cases, etc.
Added test to Transforms/GVN to verify optimization occurs as expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236511 91177308-0d34-0410-b5e6-96231b3b80d8
32-bit x86 MSVC-style exceptions are functionaly similar to 64-bit, but
they take no arguments. Instead, they implicitly use the value of EBP
passed in by the caller as a pointer to the parent's frame. In LLVM, we
can represent this as llvm.frameaddress(1), and feed that into all of
our calls to llvm.framerecover.
The next steps are:
- Add an alloca to the fs:00 linked list of handlers
- Add something like llvm.sjlj.lsda or generalize it to store in the
alloca
- Move state number calculation to WinEHPrepare, arrange for
FunctionLoweringInfo to call it
- Use the state numbers to insert explicit loads and stores in the IR
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236172 91177308-0d34-0410-b5e6-96231b3b80d8
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236120 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, if a pointer accesses different underlying objects in each
iteration, don't look through the phi node defining the pointer.
The motivating case is the underlyling-objects-2.ll testcase. Consider
the loop nest:
int **A;
for (i)
for (j)
A[i][j] = A[i-1][j] * B[j]
This loop is transformed by Load-PRE to stash away A[i] for the next
iteration of the outer loop:
Curr = A[0]; // Prev_0
for (i: 1..N) {
Prev = Curr; // Prev = PHI (Prev_0, Curr)
Curr = A[i];
for (j: 0..N)
Curr[j] = Prev[j] * B[j]
}
Since A[i] and A[i-1] are likely to be independent pointers,
getUnderlyingObjects should not assume that Curr and Prev share the same
underlying object in the inner loop.
If it did we would try to dependence-analyze Curr and Prev and the
analysis of the corresponding SCEVs would fail with non-constant
distance.
To fix this, the getUnderlyingObjects API is extended with an optional
LoopInfo parameter. This is effectively what controls whether we want
the above behavior or the original. Currently, I only changed to use
this approach for LoopAccessAnalysis.
The other testcase is to guard the opposite case where we do want to
look through the loop PHI. If we step through an array by incrementing
a pointer, the underlying object is the incoming value of the phi as the
loop is entered.
Fixes rdar://problem/19566729
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235634 91177308-0d34-0410-b5e6-96231b3b80d8
Move isDereferenceablePointer function to Analysis. This function recursively tracks dereferencability over a chain of values like other functions in ValueTracking.
This refactoring is motivated by further changes to support dereferenceable_or_null attribute (http://reviews.llvm.org/D8650). isDereferenceablePointer will be extended to perform context-sensitive analysis and IR is not a good place to have such functionality.
Patch by: Artur Pilipenko <apilipenko@azulsystems.com>
Differential Revision: reviews.llvm.org/D9075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235611 91177308-0d34-0410-b5e6-96231b3b80d8
An assert was triggered when attempting to create a new SCEV
with operands of different types in the visitAddRecExpr. In this
test case, the operand types of the numerator and denominator
are different. The SCEV division code should generate a
conservative answer when this happens.
Differential Revision: http://reviews.llvm.org/D9021
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235511 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
MemorySSA uses this algorithm as well, and this enables us to reuse the code in both places.
There are no actual algorithm or datastructure changes in here, just code movement.
Reviewers: qcolombet, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9118
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235406 91177308-0d34-0410-b5e6-96231b3b80d8
n/1 generates a quotient equal to n and a remainder of 0.
If this case is not recognized, then the SCEV divide() function
can return a remainder that is greater than or equal to the
denominator, which means the delinearized subscripts for the
test case will be incorrect.
Differential Revision: http://reviews.llvm.org/D9003
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235311 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing PR23080, gut `DIType` and its various subclasses, leaving
behind thin wrappers around the pointer types in the new debug info
hierarchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235064 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing gutting `DIDescriptor` subclasses; this edition,
`DICompileUnit` and `DIFile`. In the name of PR23080.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235055 91177308-0d34-0410-b5e6-96231b3b80d8
This commit makes LLVM not estimate branch probabilities when doing a
single bit bitmask tests.
The code that originally made me discover this is:
if ((a & 0x1) == 0x1) {
..
}
In this case we don't actually have any branch probability information
and should not assume to have any. LLVM transforms this into:
%and = and i32 %a, 1
%tobool = icmp eq i32 %and, 0
So, in this case, the result of a bitwise and is compared against 0,
but nevertheless, we should not assume to have probability
information.
CodeGen/ARM/2013-10-11-select-stalls.ll started failing because the
changed probabilities changed the results of
ARMBaseInstrInfo::isProfitableToIfCvt() and led to an Ifcvt of the
diamond in the test. AFAICT, the test was never meant to test this and
thus changing the test input slightly to not change the probabilities
seems like the best way to preserve the meaning of the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234979 91177308-0d34-0410-b5e6-96231b3b80d8
Inlining such intrinsics is very difficult, since you need to
simultaneously transform many calls to llvm.framerecover and potentially
duplicate the functions containing them. Normally this intrinsic isn't
added until EH preparation, which is part of the backend pass pipeline
after inlining. However, if it were to get fed through the inliner,
this change will ensure that it doesn't break the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234937 91177308-0d34-0410-b5e6-96231b3b80d8
With commit r219944, InstCombine can now turn a sqrtl into a llvm.fabs.f64.
The call graph edge originally representing the call to sqrtl becomes invalid.
This patch modifies CGPassManager::RefreshCallGraph() to remove the invalid
call graph edge, which can triggers an assert in
CallGraphNode::addCalledFunction().
Phabricator Review: http://reviews.llvm.org/D7705
Patch by Lawrence Hu <lawrence@codeaurora.org>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234902 91177308-0d34-0410-b5e6-96231b3b80d8
if ((a & 0x1) == 0x1) {
..
}
In this case we don't actually have any branch probability information and
should not assume to have any. LLVM transforms this into:
%and = and i32 %a, 1
%tobool = icmp eq i32 %and, 0
So, in this case, the result of a bitwise and is compared against 0,
but nevertheless, we should not assume to have probability
information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234898 91177308-0d34-0410-b5e6-96231b3b80d8
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234850 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Teach `isHighCostExpansion` to consider divisions by power-of-two
constants as cheap and add a test case. This change is needed for a new
user of `isHighCostExpansion` that will be added in a subsequent change.
Depends on D8995.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8993
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234845 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Move isHighCostExpansion from IndVarSimplify to SCEVExpander. This
exposed function will be used in a subsequent change.
Reviewers: bogner, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8995
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234844 91177308-0d34-0410-b5e6-96231b3b80d8
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234840 91177308-0d34-0410-b5e6-96231b3b80d8
Fix oversight in -analyze output. PtrRtCheck contains the pointers that
need to be checked against each other and not whether memchecks are
necessary.
For instance in the testcase PtrRtCheck has four elements but all
no-alias so no checking is necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234833 91177308-0d34-0410-b5e6-96231b3b80d8