generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146026 91177308-0d34-0410-b5e6-96231b3b80d8
This was actually a bit of a mess. TLI.setPrefLoopAlignment was clearly
documented as taking log2(bytes) units, but the x86 target would still
set a preferred loop alignment of '16'.
CodePlacementOpt passed this number on to the basic block, and
AsmPrinter interpreted it as bytes.
Now both MachineFunction and MachineBasicBlock use logarithmic
alignments.
Obviously, MachineConstantPool still measures alignments in bytes, so we
can emulate the thrill of using as.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145889 91177308-0d34-0410-b5e6-96231b3b80d8
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145714 91177308-0d34-0410-b5e6-96231b3b80d8
has a reference to it. Unfortunately, that doesn't work for codegen passes
since we don't get notified of MBB's being deleted (the original BB stays).
Use that fact to our advantage and after printing a function, check if
any of the IL BBs corresponds to a symbol that was not printed. This fixes
pr11202.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144674 91177308-0d34-0410-b5e6-96231b3b80d8
instance and a concrete inlined instance are the use of DW_TAG_subprogram
instead of DW_TAG_inlined_subroutine and the who owns the tree.
We were also omitting DW_AT_inline from the abstract roots. To fix this,
make sure we mark abstract instance roots with DW_AT_inline even when
we have only out-of-line instances referring to them with DW_AT_abstract_origin.
FileCheck is not a very good tool for tests like this, maybe we should add
a -verify mode to llvm-dwarfdump.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144441 91177308-0d34-0410-b5e6-96231b3b80d8
to fix the types section (all types, not just global types), and testcases.
The code to do the final emission is disabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143923 91177308-0d34-0410-b5e6-96231b3b80d8
the pubnames and pubtypes tables. LLDB can currently use this format
and a full spec is forthcoming and submission for standardization is planned.
A basic summary:
The dwarf accelerator tables are an indirect hash table optimized
for null lookup rather than access to known data. They are output into
an on-disk format that looks like this:
.-------------.
| HEADER |
|-------------|
| BUCKETS |
|-------------|
| HASHES |
|-------------|
| OFFSETS |
|-------------|
| DATA |
`-------------'
where the header contains a magic number, version, type of hash function,
the number of buckets, total number of hashes, and room for a special
struct of data and the length of that struct.
The buckets contain an index (e.g. 6) into the hashes array. The hashes
section contains all of the 32-bit hash values in contiguous memory, and
the offsets contain the offset into the data area for the particular
hash.
For a lookup example, we could hash a function name and take it modulo the
number of buckets giving us our bucket. From there we take the bucket value
as an index into the hashes table and look at each successive hash as long
as the hash value is still the same modulo result (bucket value) as earlier.
If we have a match we look at that same entry in the offsets table and
grab the offset in the data for our final match.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143921 91177308-0d34-0410-b5e6-96231b3b80d8
Don't assume APInt::getRawData() would hold target-aware endianness nor host-compliant endianness. rawdata[0] holds most lower i64, even on big endian host.
FIXME: Add a testcase for big endian target.
FIXME: Ditto on CompileUnit::addConstantFPValue() ?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143194 91177308-0d34-0410-b5e6-96231b3b80d8