This patch lowers the llvm.floor, llvm.ceil, llvm.trunc, and
llvm.nearbyint to Altivec instruction when using 4 single-precision
float vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168086 91177308-0d34-0410-b5e6-96231b3b80d8
- The code could infinite loop trying to create unique files, if the directory
containing the unique file exists, but open() calls on non-existent files in
the path return ENOENT. This is true on the /dev/fd filesystem, for example.
- Will add a clang side test case for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168081 91177308-0d34-0410-b5e6-96231b3b80d8
positive.
In this particular case, R6 was being spilled by the register scavenger when it
was in fact dead. The isUsed function reported R6 as used because the R6_R7
alias was reserved (due to the fact that we've reserved R7 as the FP). The
solution is to only check if the original register (i.e., R6) isReserved and
not the aliases. The aliases are only checked to make sure they're available.
The test case is derived from one of the nightly tester benchmarks and is rather
intractable and difficult to reproduce, so I haven't included it.
rdar://12592448
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168054 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly to several recent fixes throughout the code replace std::map use with the MapVector.
Add find() method to the MapVector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168051 91177308-0d34-0410-b5e6-96231b3b80d8
For global variables that get the same value stored into them
everywhere, GlobalOpt will replace them with a constant. The problem is
that a thread-local GlobalVariable looks like one value (the address of
the TLS var), but is different between threads.
This patch introduces Constant::isThreadDependent() which returns true
for thread-local variables and constants which depend on them (e.g. a GEP
into a thread-local array), and teaches GlobalOpt not to track such
values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168037 91177308-0d34-0410-b5e6-96231b3b80d8
the utility for extracting a chain of operations from the IR, thought that it
might as well combine any constants it came across (rather than just returning
them along with everything else). On the other hand, the factorization code
would like to see the individual constants (this is quite reasonable: it is
much easier to pull a factor of 3 out of 2*3 than it is to pull it out of 6;
you may think 6/3 isn't so hard, but due to overflow it's not as easy to undo
multiplications of constants as it may at first appear). This patch therefore
makes LinearizeExprTree stupider: it now leaves optimizing to the optimization
part of reassociate, and sticks to just analysing the IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168035 91177308-0d34-0410-b5e6-96231b3b80d8
Jakub Staszak spotted this in review. I don't notice these things
until I manually rerun benchmarks. But reducing unit tests is a very
high priority.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168021 91177308-0d34-0410-b5e6-96231b3b80d8
PPC64 target. The five tests modified herein test code generation that is
sensitive to the code model selected. So I've added -code-model=small to
the RUN commands for each.
Since small code model is the default, this has no effect for now; but this
prepares us for eventually changing the default to medium code model for PPC64.
Test changes verified with small and medium code model as default on
powerpc64-unknown-linux-gnu. All tests continue to pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167999 91177308-0d34-0410-b5e6-96231b3b80d8