ComplexPattern at the root be generated multiple times, once
for each opcode they are part of. This encourages factoring
because the opcode checks get treated just like everything
else in the matcher.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97439 91177308-0d34-0410-b5e6-96231b3b80d8
to a scope where every child starts with a CheckOpcode, but
executes more efficiently. Enhance DAGISelMatcherOpt to
form it.
This also fixes a bug in CheckOpcode: apparently the SDNodeInfo
objects are not pointer comparable, we have to compare the
enum name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97438 91177308-0d34-0410-b5e6-96231b3b80d8
(which gets #included into the middle of each
target's DAGISel class) into a .cpp file where it is
only compiled once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97425 91177308-0d34-0410-b5e6-96231b3b80d8
APInt. Be certain to set the integer bit in an x87 extended-precision
significand so that we don't accidentally make a pseudo-NaN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97382 91177308-0d34-0410-b5e6-96231b3b80d8
It gets its own implementation totally divorced from the (presumably
performance-sensitive) routines which parse into a uint64_t.
Add APInt::operator|=(uint64_t), which is situationally much better than
using a full APInt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97381 91177308-0d34-0410-b5e6-96231b3b80d8
payloads. APFloat's internal folding routines always make QNaNs now,
instead of sometimes making QNaNs and sometimes SNaNs depending on the
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97364 91177308-0d34-0410-b5e6-96231b3b80d8
Extracting the low element of a vector is now done with EXTRACT_SUBREG,
and the zero-extension performed by load movss is now modeled with
SUBREG_TO_REG, and so on.
Register-to-register movss and movsd are no longer considered copies;
they are two-address instructions which insert a scalar into a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97354 91177308-0d34-0410-b5e6-96231b3b80d8
defs or uses. The regular def and use checking below covers them, and
can be more precise. It's safe to hoist an instruction with a dead
implicit def if the register isn't live into the loop header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97352 91177308-0d34-0410-b5e6-96231b3b80d8
but codegen'd differently. This really wanted to use some
sort of subreg to get the low 4 bytes of the G8RC register
or something. However, it's invalid and nothing is testing
it, so I'm just zapping the bogosity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97345 91177308-0d34-0410-b5e6-96231b3b80d8
confusing the old MAT variable with the new GlobalType one. This caused
us to promote the @disp global pointer into:
@disp.body = internal global double*** undef
instead of:
@disp.body = internal global [3 x double**] undef
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97285 91177308-0d34-0410-b5e6-96231b3b80d8
for alignment into the LSDA. If the TType base offset is emitted, then put the
padding there. Otherwise, put it in the call site table length. There will be no
conflict between the two sites when placing the padding in one place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97277 91177308-0d34-0410-b5e6-96231b3b80d8
o Parallel addition and subtraction, signed/unsigned
o Miscellaneous operations: QADD, QDADD, QSUB, QDSUB
o Unsigned sum of absolute differences [and accumulate]: USAD8, USADA8
o Signed/Unsigned saturate: SSAT, SSAT16, USAT, USAT16
o Signed multiply accumulate long (halfwords): SMLAL<x><y>
o Signed multiply accumulate/subtract [long] (dual): SMLAD[x], SMLALD[X], SMLSD[X], SMLSLD[X]
o Signed dual multiply add/subtract [long]: SMUAD[X], SMUSD[X]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97276 91177308-0d34-0410-b5e6-96231b3b80d8
This is possible because F8RC is a subclass of F4RC. We keep FMRSD around so
fextend has a pattern.
Also allow folding of memory operands on FMRSD.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97275 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC floating point registers can represent both f32 and f64 via the
two register classes F4RC and F8RC. F8RC is considered a subclass of F4RC to
allow cross-class coalescing. This coalescing only affects whether registers
are spilled as f32 or f64.
Spill slots must be accessed with load/store instructions corresponding to the
class of the spilled register. PPCInstrInfo::foldMemoryOperandImpl was looking
at the instruction opcode which is wrong.
X86 has similar floating point register classes, but doesn't try to fold
memory operands, so there is no problem there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97262 91177308-0d34-0410-b5e6-96231b3b80d8