Use definition file for `DW_VIRTUALITY_*`. Add a `DW_VIRTUALITY_max`
both for ease of testing and for future use by the `LLParser`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228473 91177308-0d34-0410-b5e6-96231b3b80d8
This change resubmits the patch that broke the build, this time
without unittests. The unittests will be submitted separately
after the problem has been addressed:
--Original Commit Message--
Create lib/DebugInfo/PDB.
This patch creates a platform-independent interface to a PDB reader.
There is currently no implementation of this interface, which will
be provided in future patches. This defines the basic object model
which any implementation must conform to.
Reviewed by: David Blaikie
Differential Revision: http://reviews.llvm.org/D7356
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228435 91177308-0d34-0410-b5e6-96231b3b80d8
If complete-unroll could help us to optimize away N% of instructions, we
might want to do this even if the final size would exceed loop-unroll
threshold. However, we don't want to unroll huge loop, and we are add
AbsoluteThreshold to avoid that - this threshold will never be crossed,
even if we expect to optimize 99% instructions after that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228434 91177308-0d34-0410-b5e6-96231b3b80d8
It is a variation of SimplifyBinOp, but it takes into account
FastMathFlags.
It is needed in inliner and loop-unroller to accurately predict the
transformation's outcome (previously we dropped the flags and were too
conservative in some cases).
Example:
float foo(float *a, float b) {
float r;
if (a[1] * b)
r = /* a lot of expensive computations */;
else
r = 1;
return r;
}
float boo(float *a) {
return foo(a, 0.0);
}
Without this patch, we don't inline 'foo' into 'boo'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228432 91177308-0d34-0410-b5e6-96231b3b80d8
This patch creates a platform-independent interface to a PDB reader.
There is currently no implementation of this interface, which will
be provided in future patches. This defines the basic object model
which any implementation must conform to.
Reviewed by: David Blaikie
Differential Revision: http://reviews.llvm.org/D7356
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228428 91177308-0d34-0410-b5e6-96231b3b80d8
This was a trivial think-o, but it's in a method of a templated class
and doesn't have any callers yet, so the compiler let it pass. I hope
to add a unit test to cover this soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228425 91177308-0d34-0410-b5e6-96231b3b80d8
by using a segment set.
The patch addresses a compile-time performance regression in the LiveIntervals
analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression
is especially critical when compiling long functions. Our analysis had shown
that the most of time is taken for generation of live intervals for physical
registers. Insertions in the middle of the array of live ranges cause quadratic
algorithmic complexity, which is apparently the main reason for the slow-down.
Overview of changes:
- The patch introduces an additional std::set<Segment>* member in LiveRange for
storing segments in the phase of initial creation. The set is used if this
member is not NULL, otherwise everything works the old way.
- The set of operations on LiveRange used during initial creation (i.e. used by
createDeadDefs and extendToUses) have been reimplemented to use the segment
set if it is available.
- After a live range is created the contents of the set are flushed to the
segment vector, because the set is not as efficient as the vector for the
later uses of the live range. After the flushing, the set is deleted and
cannot be used again.
- The set is only for live ranges computed in
LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in
computeVirtRegs(), because I did not bring any performance benefits to
computeVirtRegs() and for some examples even brought a slow down.
Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com>
Differential Revision: http://reviews.llvm.org/D6013
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228421 91177308-0d34-0410-b5e6-96231b3b80d8
This will allow it to be shared with the new Loop Distribution pass.
getFirstInst is currently duplicated across LoopVectorize.cpp and
LoopAccessAnalysis.cpp. This is a short-term work-around until we figure out
a better solution.
NFC. (The code moved is adjusted a bit for the name of the Loop member and
that PtrRtCheck is now a reference rather than a pointer.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228418 91177308-0d34-0410-b5e6-96231b3b80d8
Since testing the function indirectly is tricky, introduce a direct
print-memderefs pass, in the same spirit as print-memdeps, which prints
dereferenceability information matched by FileCheck.
Differential Revision: http://reviews.llvm.org/D7075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228369 91177308-0d34-0410-b5e6-96231b3b80d8
The combine that forms extloads used to be disabled on vector types,
because "None of the supported targets knows how to perform load and
sign extend on vectors in one instruction."
That's not entirely true, since at least SSE4.1 X86 knows how to do
those sextloads/zextloads (with PMOVS/ZX).
But there are several aspects to getting this right.
First, vector extloads are controlled by a profitability callback.
For instance, on ARM, several instructions have folded extload forms,
so it's not always beneficial to create an extload node (and trying to
match extloads is a whole 'nother can of worms).
The interesting optimization enables folding of s/zextloads to illegal
(splittable) vector types, expanding them into smaller legal extloads.
It's not ideal (it introduces some legalization-like behavior in the
combine) but it's better than the obvious alternative: form illegal
extloads, and later try to split them up. If you do that, you might
generate extloads that can't be split up, but have a valid ext+load
expansion. At vector-op legalization time, it's too late to generate
this kind of code, so you end up forced to scalarize. It's better to
just avoid creating egregiously illegal nodes.
This optimization is enabled unconditionally on X86.
Note that the splitting combine is happy with "custom" extloads. As
is, this bypasses the actual custom lowering, and just unrolls the
extload. But from what I've seen, this is still much better than the
current custom lowering, which does some kind of unrolling at the end
anyway (see for instance load_sext_4i8_to_4i64 on SSE2, and the added
FIXME).
Also note that the existing combine that forms extloads is now also
enabled on legal vectors. This doesn't have a big effect on X86
(because sext+load is usually combined to sext_inreg+aextload).
On ARM it fires on some rare occasions; that's for a separate commit.
Differential Revision: http://reviews.llvm.org/D6904
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228325 91177308-0d34-0410-b5e6-96231b3b80d8
The node is still defined oddly so that the
address spaces are not operands and not accessible
from tablegen, but as-is this can now be used to write
a ComplexPattern with an addrspacecast root node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228270 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: When evaluating floating point instructions in the inliner, ask the TTI whether it is an expensive operation. By default, it's not an expensive operation. This keeps the default behavior the same as before. The ARM TTI has been updated to return back TCC_Expensive for targets which don't have hardware floating point.
Reviewers: chandlerc, echristo
Reviewed By: echristo
Subscribers: t.p.northover, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6936
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228263 91177308-0d34-0410-b5e6-96231b3b80d8
Add some API to `APSInt` to make it easier to compare with `int64_t`.
- `APSInt::compareValues(APSInt, APSInt)` returns 1, -1 or 0 for
greater, lesser, or equal, doing the right thing for mismatched
"has-sign" and bitwidths. This is just like `isSameValue()` (and is
now the implementation of it).
- `APSInt::get(int64_t)` gets a signed `APSInt`.
- `operator<(int64_t)`, etc., are implemented trivially via `get()`
and `compareValues()`.
- Also added `APSInt::getUnsigned(uint64_t)` to make it easier to test
`compareValues()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228239 91177308-0d34-0410-b5e6-96231b3b80d8
This used to do something when we modeled the Cygwin and MinGW
environments as distinct OSs, but now it is not needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228229 91177308-0d34-0410-b5e6-96231b3b80d8
In case CSE reuses a previoulsy unused register the dead-def flag has to
be cleared on the def operand, as exposed by the arm64-cse.ll test.
This fixes PR22439 and the corresponding rdar://19694987
Differential Revision: http://reviews.llvm.org/D7395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228178 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change allows users to create SpecialCaseList objects from
multiple local files. This is needed to implement a proper support
for -fsanitize-blacklist flag (allow users to specify multiple blacklists,
in addition to default blacklist, see PR22431).
DFSan can also benefit from this change, as DFSan instrumentation pass now
accepts ABI-lists both from -fsanitize-blacklist= and -mllvm -dfsan-abilist flags.
Go bindings are fixed accordingly.
Test Plan: regression test suite
Reviewers: pcc
Subscribers: llvm-commits, axw, kcc
Differential Revision: http://reviews.llvm.org/D7367
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228155 91177308-0d34-0410-b5e6-96231b3b80d8
This pass is responsible for figuring out where to place call safepoints and safepoint polls. It doesn't actually make the relocations explicit; that's the job of the RewriteStatepointsForGC pass (http://reviews.llvm.org/D6975).
Note that this code is not yet finalized. Its moving in tree for incremental development, but further cleanup is needed and will happen over the next few days. It is not yet part of the standard pass order.
Planned changes in the near future:
- I plan on restructuring the statepoint rewrite to use the functions add to the IRBuilder a while back.
- In the current pass, the function "gc.safepoint_poll" is treated specially but is not an intrinsic. I plan to make identifying the poll function a property of the GCStrategy at some point in the near future.
- As follow on patches, I will be separating a collection of test cases we have out of tree and submitting them upstream.
- It's not explicit in the code, but these two patches are introducing a new state for a statepoint which looks a lot like a patchpoint. There's no a transient form which doesn't yet have the relocations explicitly represented, but does prevent reordering of memory operations. Once this is in, I need to update actually make this explicit by reserving the 'unused' argument of the statepoint as a flag, updating the docs, and making the code explicitly check for such a thing. This wasn't really planned, but once I split the two passes - which was done for other reasons - the intermediate state fell out. Just reminds us once again that we need to merge statepoints and patchpoints at some point in the not that distant future.
Future directions planned:
- Identifying more cases where a backedge safepoint isn't required to ensure timely execution of a safepoint poll.
- Tweaking the insertion process to generate easier to optimize IR. (For example, investigating making SplitBackedge) the default.
- Adding opt-in flags for a GCStrategy to use this pass. Once done, add this pass to the actual pass ordering.
Differential Revision: http://reviews.llvm.org/D6981
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228090 91177308-0d34-0410-b5e6-96231b3b80d8
Creating empty and expansion regions is awkward with the current API.
Expose static methods to make this simpler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228075 91177308-0d34-0410-b5e6-96231b3b80d8
Also re-implements the `dwarf::Tag` enumerator. I've moved the mock
tags into the enumerator since there's no other way to do this. Really
they shouldn't be used at all (they're just a hack to identify
`MDNode`s, but we have a class hierarchy for that now).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228030 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Straight-line strength reduction (SLSR) is implemented in GCC but not yet in
LLVM. It has proven to effectively simplify statements derived from an unrolled
loop, and can potentially benefit many other cases too. For example,
LLVM unrolls
#pragma unroll
foo (int i = 0; i < 3; ++i) {
sum += foo((b + i) * s);
}
into
sum += foo(b * s);
sum += foo((b + 1) * s);
sum += foo((b + 2) * s);
However, no optimizations yet reduce the internal redundancy of the three
expressions:
b * s
(b + 1) * s
(b + 2) * s
With SLSR, LLVM can optimize these three expressions into:
t1 = b * s
t2 = t1 + s
t3 = t2 + s
This commit is only an initial step towards implementing a series of such
optimizations. I will implement more (see TODO in the file commentary) in the
near future. This optimization is enabled for the NVPTX backend for now.
However, I am more than happy to push it to the standard optimization pipeline
after more thorough performance tests.
Test Plan: test/StraightLineStrengthReduce/slsr.ll
Reviewers: eliben, HaoLiu, meheff, hfinkel, jholewinski, atrick
Reviewed By: jholewinski, atrick
Subscribers: karthikthecool, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D7310
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228016 91177308-0d34-0410-b5e6-96231b3b80d8
lto_codegen_compile_optimized. Also add lto_api_version.
Before this commit, we can only dump the optimized bitcode after running
lto_codegen_compile, but it includes some impacts of running codegen passes,
one example is StackProtector pass. We will get assertion failure when running
llc on the optimized bitcode, because StackProtector is effectively run twice.
After splitting lto_codegen_compile, the linker can choose to dump the bitcode
before running lto_codegen_compile_optimized.
lto_api_version is added so ld64 can check for runtime-availability of the new
API.
rdar://19565500
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228000 91177308-0d34-0410-b5e6-96231b3b80d8
LoopVectorizationLegality::{getNumLoads,getNumStores} should forward to
LoopAccessAnalysis now.
Thanks to Takumi for noticing this!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227992 91177308-0d34-0410-b5e6-96231b3b80d8
The PBQP::RegAlloc::MatrixMetadata class assumes that matrices have at least two
rows/columns (for the spill option plus at least one physreg). This patch
ensures that that invariant is met by pre-spilling vregs that have no physreg
options so that no node (and no corresponding edges) need be added to the PBQP
graph.
This fixes a bug in an out-of-tree target that was identified by Jonas Paulsson.
Thanks for tracking this down Jonas!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227942 91177308-0d34-0410-b5e6-96231b3b80d8