ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation.
ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class.
ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target.
Specific changes:
- Removed driver code from ScheduleDAG. clearDAG is the only interface needed.
- Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls.
- Added ScheduleDAGInstrs::begin()/end() public API.
- Moved Sequence into the driver layer, which is specific to the scheduling algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
To avoid problems with zero shifts when getting the bits that move between words
we use a trick: first shift the by amount-1, then do another shift by one. When
amount is 0 (and size 32) we first shift by 31, then by one, instead of by 32.
Also fix a latent bug that emitted the low and high words in the wrong order
when shifting right.
Fixes PR12113.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151637 91177308-0d34-0410-b5e6-96231b3b80d8
When the GEP index is a vector of pointers, the code that calculated the size
of the element started from the vector type, and not the contained pointer type.
As a result, instead of looking at the data element pointed by the vector, this
code used the size of the vector. This works for 32bit members (on 32bit
systems), but not for other types. Added code to peel the vector type and
added a test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151626 91177308-0d34-0410-b5e6-96231b3b80d8
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151623 91177308-0d34-0410-b5e6-96231b3b80d8
variable declaration as an argument because we want that address
anyhow for our debug information.
This seems to fix rdar://9965111, at least we have more debug
information than before and from reading the assembly it appears
to be the correct location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151335 91177308-0d34-0410-b5e6-96231b3b80d8
that are greater than the vector element type. For example BUILD_VECTOR
of type <1 x i1> with a constant i8 operand.
This patch fixes the assertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150477 91177308-0d34-0410-b5e6-96231b3b80d8
The scheduler will sometimes check the implicit-def list on instructions
to properly handle pre-colored DAG edges.
Also check any register mask operands for physreg clobbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150428 91177308-0d34-0410-b5e6-96231b3b80d8
v8i8 -> v8i32 on AVX machines. The codegen often scalarizes ANY_EXTEND nodes.
The DAGCombiner has two optimizations that can mitigate the problem. First,
if all of the operands of a BUILD_VECTOR node are extracted from an ZEXT/ANYEXT
nodes, then it is possible to create a new simplified BUILD_VECTOR which uses
UNDEFS/ZERO values to eliminate the scalar ZEXT/ANYEXT nodes.
Second, another dag combine optimization lowers BUILD_VECTOR into a shuffle
vector instruction.
In the case of zext v8i8->v8i32 on AVX, a value in an XMM register is to be
shuffled into a wide YMM register.
This patch modifes the second optimization and allows the creation of
shuffle vectors even when the newly generated vector and the original vector
from which we extract the values are of different types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150340 91177308-0d34-0410-b5e6-96231b3b80d8
Make them accessible through MCInstrInfo. They are only used for debugging purposes so this doesn't
have an impact on performance. X86MCTargetDesc.o goes from 630K to 461K on x86_64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150245 91177308-0d34-0410-b5e6-96231b3b80d8
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149800 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG has 4 different ways of passing physreg defs to users.
Collect all of the uses at the same time, and pass all of them to
MI->setPhysRegsDeadExcept() to mark the remaining defs dead.
The setPhysRegsDeadExcept() function will soon add the required
implicit-defs to instructions with register mask operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149708 91177308-0d34-0410-b5e6-96231b3b80d8