the returned value after the tail call if it differs from other return
values. The optimal thing to do would be to introduce a phi node for
the return value, but for the moment just fix the miscompile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106947 91177308-0d34-0410-b5e6-96231b3b80d8
The memcmp will be optimized further and even the pathological case
'strstr(x, "x") == x' generates optimal code now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106097 91177308-0d34-0410-b5e6-96231b3b80d8
the newly created allocas may be used by inlined calls, so these
need to have their tail call flags cleared. Fixes PR7272.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105255 91177308-0d34-0410-b5e6-96231b3b80d8
when it detects undefined behavior. llvm.trap generally codegens into some
thing really small (e.g. a 2 byte ud2 instruction on x86) and debugging this
sort of thing is "nontrivial". For example, we now compile:
void foo() { *(int*)0 = 42; }
into:
_foo:
pushl %ebp
movl %esp, %ebp
ud2
Some may even claim that this is a security hole, though that seems dubious
to me. This addresses rdar://7958343 - Optimizing away null dereference
potentially allows arbitrary code execution
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103356 91177308-0d34-0410-b5e6-96231b3b80d8
with a vector input and output into a shuffle vector. This sort of
sequence happens when the input code stores with one type and reloads
with another type and then SROA promotes to i96 integers, which make
everyone sad.
This fixes rdar://7896024
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103354 91177308-0d34-0410-b5e6-96231b3b80d8
values passed to llvm.dbg.value were not valid for the intrinsic, it
might have caused trouble one day if the verifier ever started checking
for valid debug info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103038 91177308-0d34-0410-b5e6-96231b3b80d8
RAUW of a global variable with a local variable in function F,
if function local metadata M in function G was using the global
then M would become function-local to both F and G, which is not
allowed. See the testcase for an example. Fixed by detecting
this situation and zapping the metadata operand when it occurs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103007 91177308-0d34-0410-b5e6-96231b3b80d8
halting analysis, it is illegal to delete a call to a read-only function.
The correct solution is almost certainly to add a "must halt" attribute and
only allow deletions in its presence.
XFAIL the relevant testcase for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102831 91177308-0d34-0410-b5e6-96231b3b80d8
if an indirect call site was removed and a direct one was added, not
just if an indirect call site was modified to be direct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102830 91177308-0d34-0410-b5e6-96231b3b80d8
that can have a big effect :). The first is to enable the
iterative SCC passmanager juice that kicks in when the
scc passmgr detects that a function pass has devirtualized
a call. In this case, it will rerun all the passes it
manages on the SCC, up to the iteration count limit (4). This
is useful because a function pass may devirualize a call, and
we want the inliner to inline it, or pruneeh to infer stuff
about it, etc.
The second patch is to add *all* call sites to the
DevirtualizedCalls list the inliner uses. This list is
about to get renamed, but the jist of this is that the
inliner now reconsiders *all* inlined call sites as candidates
for further inlining. The intuition is this that in cases
like this:
f() { g(1); } g(int x) { h(x); }
We analyze this bottom up, and may decide that it isn't
profitable to inline H into G. Next step, we decide that it is
profitable to inline G into F, and do so, which means that F
now calls H. Even though the call from G -> H may not have been
profitable to inline, the call from F -> H may be (in this case
because a constant allows folding etc).
In my spot checks, this doesn't have a big impact on code. For
example, the LLC output for 252.eon grew from 0.02% (from
317252 to 317308) and 176.gcc actually shrunk by .3% (from 1525612
to 1520964 bytes). 252.eon never iterated in the SCC Passmgr,
176.gcc iterated at most 1 time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102823 91177308-0d34-0410-b5e6-96231b3b80d8
that appear due to inlining a callee as candidates for
futher inlining, but a recent patch made it do this if
those call sites were indirect and became direct.
Unfortunately, in bizarre cases (see testcase) doing this
can cause us to infinitely inline mutually recursive
functions into callers not in the cycle. Fix this by
keeping track of the inline history from which callsite
inline candidates got inlined from.
This shouldn't affect any "real world" code, but is required
for a follow on patch that is coming up next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102822 91177308-0d34-0410-b5e6-96231b3b80d8
were still inlining self-recursive functions into other functions.
Inlining a recursive function into itself has the potential to
reduce recursion depth by a factor of 2, inlining a recursive
function into something else reduces recursion depth by exactly
1. Since inlining a recursive function into something else is a
weird form of loop peeling, turn this off.
The deleted testcase was added by Dale in r62107, since then
we're leaning towards not inlining recursive stuff ever. In any
case, if we like inlining recursive stuff, it should be done
within the recursive function itself to get the algorithm
recursion depth win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102798 91177308-0d34-0410-b5e6-96231b3b80d8
that appear in the SCC as a result of inlining as candidates
for inlining. Change this so that it *does* consider call
sites that change from being indirect to being direct as a
result of inlining. This allows it to completely
"devirtualize" the testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102146 91177308-0d34-0410-b5e6-96231b3b80d8