(I think it's reasonably clear that we want to have a canonical form for
constructs like this; if anyone thinks that a select is not the best
canonical form, please tell me.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75531 91177308-0d34-0410-b5e6-96231b3b80d8
using the Curiously Recurring Template Pattern with LoopBase.
This will help further refactoring, and future functionality for
Loop. Also, Headers can now foward-declare Loop, instead of pulling
in LoopInfo.h or doing tricks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75519 91177308-0d34-0410-b5e6-96231b3b80d8
the changes are allowed by not calling this function for bitcasts.
The Instruction::AShr case is dead because
SimplifyDemandedInstructionBits handles that case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75514 91177308-0d34-0410-b5e6-96231b3b80d8
This involves temporarily hard wiring some parts to use the global context. This isn't ideal, but it's
the only way I could figure out to make this process vaguely incremental.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75445 91177308-0d34-0410-b5e6-96231b3b80d8
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75379 91177308-0d34-0410-b5e6-96231b3b80d8
per icmp predicate out of predsimplify and into ConstantRange.
Add another utility method that determines whether one range is a subset of
another. Combine with the former to determine whether icmp pred range, range
is known to be true or not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75357 91177308-0d34-0410-b5e6-96231b3b80d8
This way ScalarEvolution can examine the loop to determine what state
it needs to update, if it chooses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75029 91177308-0d34-0410-b5e6-96231b3b80d8
Use it by requiring it through the pass manager, then calling its createSSI
method on the variables that you want in SSI form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74780 91177308-0d34-0410-b5e6-96231b3b80d8
This was considering vector intrinsics to have cost 2, but non-vector
intrinsics to have cost 1, which is backward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74698 91177308-0d34-0410-b5e6-96231b3b80d8
of the bitcode reader and ASM parser APIs, as well as supporting it in all of the tools.
Patches for Clang and LLVM-GCC to follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74614 91177308-0d34-0410-b5e6-96231b3b80d8
when one of them can be converted to a trivial icmp and conditional
branch.
This addresses what is essentially a phase ordering problem.
SimplifyCFG knows how to do this transformation, but it doesn't do so
if the primary block has any instructions in it other than an icmp and
a branch. In the given testcase, the block contains other instructions,
however they are loop-invariant and can be hoisted. SimplifyCFG doesn't
have LoopInfo though, so it can't hoist them. And, it's important that
the blocks be merged before LoopRotation, as it doesn't support
multiple-exit loops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74396 91177308-0d34-0410-b5e6-96231b3b80d8
inserted to replace that value must dominate all of of the basic
blocks associated with the uses of the value in the PHI, not just
one of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74376 91177308-0d34-0410-b5e6-96231b3b80d8