These values were not used for anything. Spill size and alignment is a property
of the register class, not the register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129906 91177308-0d34-0410-b5e6-96231b3b80d8
On the x86-64 and thumb2 targets, some registers are more expensive to encode
than others in the same register class.
Add a CostPerUse field to the TableGen register description, and make it
available from TRI->getCostPerUse. This represents the cost of a REX prefix or a
32-bit instruction encoding required by choosing a high register.
Teach the greedy register allocator to prefer cheap registers for busy live
ranges (as indicated by spill weight).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129864 91177308-0d34-0410-b5e6-96231b3b80d8
Add a avoidWriteAfterWrite() target hook to identify register classes that
suffer from write-after-write hazards. For those register classes, try to avoid
writing the same register in two consecutive instructions.
This is currently disabled by default. We should not spill to avoid hazards!
The command line flag -avoid-waw-hazard can be used to enable waw avoidance.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129772 91177308-0d34-0410-b5e6-96231b3b80d8
the generated FastISel. X86 doesn't need to generate code to match ADD16ri8
since ADD16ri will do just fine. This is a small codesize win in the generated
instruction selector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129692 91177308-0d34-0410-b5e6-96231b3b80d8
kind of predicate: one that is specific to imm nodes. The predicate function
specified here just checks an int64_t directly instead of messing around with
SDNode's. The virtue of this is that it means that fastisel and other things
can reason about these predicates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129675 91177308-0d34-0410-b5e6-96231b3b80d8
structure and fix some fixmes. We now have a TreePredicateFn class
that handles all of the decoding of these things. This is an internal
cleanup that has no impact on the code generated by tblgen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129670 91177308-0d34-0410-b5e6-96231b3b80d8
Additional fixes:
Do something reasonable for subtargets with generic
itineraries by handle node latency the same as for an empty
itinerary. Now nodes default to unit latency unless an itinerary
explicitly specifies a zero cycle stage or it is a TokenFactor chain.
Original fixes:
UnitsSharePred was a source of randomness in the scheduler: node
priority depended on the queue data structure. I rewrote the recent
VRegCycle heuristics to completely replace the old heuristic without
any randomness. To make the ndoe latency adjustments work, I also
needed to do something a little more reasonable with TokenFactor. I
gave it zero latency to its consumers and always schedule it as low as
possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129421 91177308-0d34-0410-b5e6-96231b3b80d8
transformations in target-specific DAG combines without causing DAGCombiner to
delete the same node twice. If you know of a better way to avoid this (see my
next patch for an example), please let me know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128758 91177308-0d34-0410-b5e6-96231b3b80d8
the alias of an InstAlias instead of the thing being aliased. Because we need to
know the features that are valid for an InstAlias.
This is part of a work-in-progress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127986 91177308-0d34-0410-b5e6-96231b3b80d8
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127953 91177308-0d34-0410-b5e6-96231b3b80d8
Proof-of-concept code that code-gens a module to an in-memory MachO object.
This will be hooked up to a run-time dynamic linker library (see: llvm-rtdyld
for similarly conceptual work for that part) which will take the compiled
object and link it together with the rest of the system, providing back to the
JIT a table of available symbols which will be used to respond to the
getPointerTo*() queries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127916 91177308-0d34-0410-b5e6-96231b3b80d8
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127766 91177308-0d34-0410-b5e6-96231b3b80d8
flexible.
If it returns a register class that's different from the input, then that's the
register class used for cross-register class copies.
If it returns a register class that's the same as the input, then no cross-
register class copies are needed (normal copies would do).
If it returns null, then it's not at all possible to copy registers of the
specified register class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127368 91177308-0d34-0410-b5e6-96231b3b80d8
regs. This is the only change in this checkin that may affects the
default scheduler. With better register tracking and heuristics, it
doesn't make sense to artificially lower the register limit so much.
Added -sched-high-latency-cycles and X86InstrInfo::isHighLatencyDef to
give the scheduler a way to account for div and sqrt on targets that
don't have an itinerary. It is currently defaults to 10 (the actual
number doesn't matter much), but only takes effect on non-default
schedulers: list-hybrid and list-ilp.
Added several heuristics that can be individually disabled for the
non-default sched=list-ilp mode. This helps us determine how much
better we can do on a given benchmark than the default
scheduler. Certain compute intensive loops run much faster in this
mode with the right set of heuristics, and it doesn't seem to have
much negative impact elsewhere. Not all of the heuristics are needed,
but we still need to experiment to decide which should be disabled by
default for sched=list-ilp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127067 91177308-0d34-0410-b5e6-96231b3b80d8
and iprintf is available on the target. Currently iprintf is only
marked as being available on the XCore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126935 91177308-0d34-0410-b5e6-96231b3b80d8
A major part of its (eventual) goal is to support a much cleaner separation between disassembly callbacks
provided by the target and the disassembler emitter itself, i.e. not requiring hardcoding of knowledge in tblgen
like the existing disassembly emitters do.
The hope is that some day this will allow us to replace the existing non-Thumb ARM disassembler and remove
some of the hacks the old one introduced to tblgen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125966 91177308-0d34-0410-b5e6-96231b3b80d8