modify the type and location debug information for these variables to match the
programmer's expectations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80625 91177308-0d34-0410-b5e6-96231b3b80d8
SCEVUnknowns, as the non-SCEVUnknown cases in the getSCEVAtScope code
can also end up repeatedly climing through the same expression trees,
which can be unusably slow when the trees are very tall.
Also, add a quick check for SCEV pointer equality to the main
SCEV comparison routine, as the full comparison code can be expensive
in the case of large expression trees.
These fix compile-time problems in some pathlogical cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80623 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes leaks from LLVMContext in multithreaded apps.
Since constants are only deleted if they have no uses, it is safe to not delete
a Module on shutdown, as many single-threaded tools do.
Multithreaded apps should however delete the Module before destroying the
Context to ensure that there are no leaks (assuming they use a different context
for each thread).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80590 91177308-0d34-0410-b5e6-96231b3b80d8
stem from the fact that we have two types of passes that need to update it:
1. callgraphscc and module passes that are explicitly aware of it
2. Functionpasses (and loop passes etc) that are interlaced with CGSCC passes
by the CGSCC Passmgr.
In the case of #1, we can reasonably expect the passes to update the call
graph just like any analysis. However, functionpasses are not and generally
should not be CG aware. This has caused us no end of problems, so this takes
a new approach. Logically, the CGSCC Pass manager can rescan every function
after it runs a function pass over it to see if the functionpass made any
updates to the IR that affect the callgraph. This allows it to catch new calls
introduced by the functionpass.
In practice, doing this would be slow. This implementation keeps track of
whether or not the current scc is dirtied by a function pass, and, if so,
delays updating the callgraph until it is actually needed again. This was
we avoid extraneous rescans, but we still have good invariants when the
callgraph is needed.
Step #2 of the "give Callgraph some sane invariants" is to change CallGraphNode
to use a CallBackVH for the callsite entry of the CallGraphNode. This way
we can immediately remove entries from the callgraph when a FunctionPass is
active instead of having dangling pointers. The current pass tries to tolerate
these dangling pointers, but it is just an evil hack.
This is related to PR3601/4835/4029. This also reverts r80541, a hack working
around the sad lack of invariants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80566 91177308-0d34-0410-b5e6-96231b3b80d8
changes: SimplifyDemandedBits can't use the builder yet because it
has the wrong insertion point. This fixes a crash building
MultiSource/Benchmarks/PAQ8p
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80537 91177308-0d34-0410-b5e6-96231b3b80d8
instead of CallGraphNode*'s. This also papers over a callgraph
problem where a pass (in this case, MemCpyOpt) introduces a new
function into the module (llvm.memset.i64) but doesn't add it to
the call graph (nor should it, since it is a function pass).
While it might be a good idea for MemCpyOpt to not synthesize
functions in a runOnFunction(), there is no need for FunctionAttrs
to be boneheaded, so fix it there. This fixes an assertion building
176.gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80535 91177308-0d34-0410-b5e6-96231b3b80d8
indirect function pointer, inline it, then go to delete the body.
The problem is that the callgraph had other references to the function,
though the inliner had no way to know it, so we got a dangling pointer
and an invalid iterator out of the deal.
The fix to this is pretty simple: stop the inliner from deleting the
function by knowing that there are references to it. Do this by making
CallGraphNodes contain a refcount. This requires moving deletion of
available_externally functions to the module-level cleanup sweep where
it belongs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80533 91177308-0d34-0410-b5e6-96231b3b80d8
Shared landing pads run into trouble with SJLJ, as the dispatch table is
mapped to call sites, and merging the pads will throw that off. There needs
to be a one-to-one mapping of landing pad exception table entries to invoke
call points.
Detecting the shared pad during lowering of SJLJ info insn't sufficient, as
the dispatch function may still need separate destinations to properly
handle phi-nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80530 91177308-0d34-0410-b5e6-96231b3b80d8