Specifically according to the semantics of ARC -fno-objc-arc-exception simply
states that it is expected that the unwind path out of a call *MAY* not release
objects. Thus we can have the situation where a release gets moved into a catch
block which we ignore when we remove a retain/release pair resulting in (even
though we assume the program is exiting anyways) the cleanup code path
potentially blowing up before program exit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172599 91177308-0d34-0410-b5e6-96231b3b80d8
case, but looking at the diff this was an obviously unintended change.
Thanks for the careful review Bill! =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172336 91177308-0d34-0410-b5e6-96231b3b80d8
The reason that this occurs is that tail calling objc_autorelease eventually
tail calls -[NSObject autorelease] which supports fast autorelease. This can
cause us to violate the semantic gaurantees of __autoreleasing variables that
assignment to an __autoreleasing variables always yields an object that is
placed into the innermost autorelease pool.
The fix included in this patch works by:
1. In the peephole optimization function OptimizeIndividualFunctions, always
remove tail call from objc_autorelease.
2. Whenever we convert to/from an objc_autorelease, set/unset the tail call
keyword as appropriate.
*NOTE* I also handled the case where objc_autorelease is converted in
OptimizeReturns to an autoreleaseRV which still violates the ARC semantics. I
will be removing that in a later patch and I wanted to make sure that the tree
is in a consistent state vis-a-vis ARC always.
Additionally some test cases are provided and all tests that have tail call marked
objc_autorelease keywords have been modified so that tail call has been removed.
*NOTE* One test fails due to a separate bug that I am going to commit soon. Thus
I marked the check line TMP: instead of CHECK: so make check does not fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172287 91177308-0d34-0410-b5e6-96231b3b80d8
The root cause is mistakenly taking for granted that
"dyn_cast<Instruction>(a-Value)"
return a non-NULL instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172145 91177308-0d34-0410-b5e6-96231b3b80d8
1. Added debug messages when in OptimizeIndividualCalls we move calls into predecessors and then erase the original call.
2. Added debug messages when in the process of moving calls in ObjCARCOpt::MoveCalls we create new RR and delete old RR.
3. Added a debug message when we visit a specific retain instruction in ObjCARCOpt::PerformCodePlacement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171988 91177308-0d34-0410-b5e6-96231b3b80d8
peculiar headers under include/llvm.
This struct still doesn't make a lot of sense, but it makes more sense
down in TargetLowering than it did before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171739 91177308-0d34-0410-b5e6-96231b3b80d8
already in a class, just inline the four of them. I suspect that this
class could be simplified some to not always keep distinct variables for
these things, but it wasn't clear to me how given the usage so I opted
for a trivial and mechanical translation.
This removes one of the two remaining users of a header in include/llvm
which does nothing more than define a 4 member struct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171738 91177308-0d34-0410-b5e6-96231b3b80d8
TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.
This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.
The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.
I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.
Yet again, almost all of the formatting changes brought to you by
clang-format. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171735 91177308-0d34-0410-b5e6-96231b3b80d8
I'm sorry for duplicating bad style here, but I wanted to keep
consistency. I've pinged the code review thread where this style was
reviewed and changes were requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171714 91177308-0d34-0410-b5e6-96231b3b80d8
through as a reference rather than a pointer. There is always *some*
implementation of this available, so this simplifies code by not having
to test for whether it is available or not.
Further, it turns out there were piles of places where SimplifyCFG was
recursing and not passing down either TD or TTI. These are fixed to be
more pedantically consistent even though I don't have any particular
cases where it would matter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171691 91177308-0d34-0410-b5e6-96231b3b80d8
The reason that there are two cases is that the first case handles the unary cases and the second the binary cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171672 91177308-0d34-0410-b5e6-96231b3b80d8
next to its only user. This helper relies on TargetLowering information
that shouldn't be generally used throughout the Transfoms library, and
so it made little sense as a generic utility.
This also consolidates the file where we need to remove the remaining
uses of TargetLowering in favor of the IR-layer abstract interface in
TargetTransformInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171590 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py script.
Most of these are updating the new R600 target and fixing up a few
regressions that have creeped in since the last time I sorted the
includes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171362 91177308-0d34-0410-b5e6-96231b3b80d8