After collecting chains, check if any should be materialized. If so,
hide the chained IV users from the LSR solver. LSR will only solve for
the head of the chain. GenerateIVChains will then materialize the
chained IV users by computing the IV relative to its previous value in
the chain.
In theory, chained IV users could be exposed to LSR's solver. This
would be considerably complicated to implement and I'm not aware of a
case where we need it. In practice it's more important to
intelligently prune the search space of nontrivial loops before
running the solver, otherwise the solver is often forced to prune the
most optimal solutions. Hiding the chained users does this well, so
that LSR is more likely to find the best IV for the chain as a whole.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147801 91177308-0d34-0410-b5e6-96231b3b80d8
This collects a set of IV uses within the loop whose values can be
computed relative to each other in a sequence. Following checkins will
make use of this information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147797 91177308-0d34-0410-b5e6-96231b3b80d8
This will be more important as we extend the LSR pass in ways that don't rely on the formula solver. In particular, we need it for constructing IV chains.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147724 91177308-0d34-0410-b5e6-96231b3b80d8
LoopSimplify may not run on some outer loops, e.g. because of indirect
branches. SCEVExpander simply cannot handle outer loops with no preheaders.
Fixes rdar://10655343 SCEVExpander segfault.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147718 91177308-0d34-0410-b5e6-96231b3b80d8
performance regressions (both execution-time and compile-time) on our
nightly testers.
Original commit message:
Fix for bug #11429: Wrong behaviour for switches. Small improvement for code
size heuristics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147131 91177308-0d34-0410-b5e6-96231b3b80d8
into Analysis as a standalone function, since there's no need for
it to be in VMCore. Also, update it to use isKnownNonZero and
other goodies available in Analysis, making it more precise,
enabling more aggressive optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146610 91177308-0d34-0410-b5e6-96231b3b80d8
This should always be done as a matter of principal. I don't have a
case that exposes the problem. I just noticed this recently while
scanning the code and realized I meant to fix it long ago.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146438 91177308-0d34-0410-b5e6-96231b3b80d8
detected in the forward-CFG DFS. This prevents the reverse-CFG from
visiting blocks inside loops after blocks that dominate them in the
case where loops have multiple exits.
No testcase, because this fixes a bug which in practice only shows
up in a full optimizer run, due to the use-list order.
This fixes rdar://10422791 and others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146408 91177308-0d34-0410-b5e6-96231b3b80d8
indicates whether the intrinsic has a defined result for a first
argument equal to zero. This will eventually allow these intrinsics to
accurately model the semantics of GCC's __builtin_ctz and __builtin_clz
and the X86 instructions (prior to AVX) which implement them.
This patch merely sets the stage by extending the signature of these
intrinsics and establishing auto-upgrade logic so that the old spelling
still works both in IR and in bitcode. The upgrade logic preserves the
existing (inefficient) semantics. This patch should not change any
behavior. CodeGen isn't updated because it can use the existing
semantics regardless of the flag's value.
Note that this will be followed by API updates to Clang and DragonEgg.
Reviewed by Nick Lewycky!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146357 91177308-0d34-0410-b5e6-96231b3b80d8
Since we're not rewriting IVs in other loops, there's not much reason
to consider their stride when generating formulae.
This should reduce the number of useless formulas considered by LSR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146302 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Brendon Cahoon!
This extends the existing LoopUnroll and LoopUnrollPass. Brendon
measured no regressions in the llvm test suite with -unroll-runtime
enabled. This implementation works by using the existing loop
unrolling code to unroll the loop by a power-of-two (default 8). It
generates an if-then-else sequence of code prior to the loop to
execute the extra iterations before entering the unrolled loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146245 91177308-0d34-0410-b5e6-96231b3b80d8
It's always good to prune early, but formulae that are unsatisfactory
in their own right need to be removed before running any other pruning
heuristics. We easily avoid generating such formulae, but we need them
as an intermediate basis for forming other good formulae.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145906 91177308-0d34-0410-b5e6-96231b3b80d8
where this would be bad as the backend shouldn't have a problem inlining small
memcpys.
rdar://10510150
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145865 91177308-0d34-0410-b5e6-96231b3b80d8