The basic issue is that isel (very reasonably!) expects conditional branches
to be folded, so CGP leaving around a bunch dead computation feeding
conditional branches isn't such a good idea. Just fold branches on constants
into unconditional branches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123526 91177308-0d34-0410-b5e6-96231b3b80d8
have objectsize folding recursively simplify away their result when it
folds. It is important to catch this here, because otherwise we won't
eliminate the cross-block values at isel and other times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123524 91177308-0d34-0410-b5e6-96231b3b80d8
potentially invalidate it (like inline asm lowering) to be sunk into
their proper place, cleaning up a ton of code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123523 91177308-0d34-0410-b5e6-96231b3b80d8
instead of DomTree/DomFrontier. This may be interesting for reducing compile
time. This is currently disabled, but seems to work just fine.
When this is enabled, we eliminate two runs of dominator frontier, one in the
"early per-function" optimizations and one in the "interlaced with inliner"
function passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123434 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minor extension of SROA to handle a special case that is
important for some ARM NEON operations. Some of the NEON intrinsics
return multiple values, which are handled as struct types containing
multiple elements of the same vector type. The corresponding return
types declared in the arm_neon.h header have equivalent arrays. We
need SROA to recognize that it can split up those arrays and structs
into separate vectors, even though they are not always accessed with
the same type. SROA already handles loads and stores of an entire
alloca by using insertvalue/extractvalue to access the individual
pieces, and that code works the same regardless of whether the type
is a struct or an array. So, all that needs to be done is to check
for compatible arrays and homogeneous structs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123381 91177308-0d34-0410-b5e6-96231b3b80d8
SROA only split up structs and arrays one level at a time, so padding can
only cause trouble if it is located in between the struct or array elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123380 91177308-0d34-0410-b5e6-96231b3b80d8
phi nodes. It is called from MergeBlockIntoPredecessor which is
called from GVN, which claims to preserve these.
I'm skeptical that this is the actual problem behind PR8954, but
this is a stab in the right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123222 91177308-0d34-0410-b5e6-96231b3b80d8
without informing memdep. This could cause nondeterminstic weirdness
based on where instructions happen to get allocated, and will hopefully
breath some life into some broken testers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123124 91177308-0d34-0410-b5e6-96231b3b80d8
larger memsets. Among other things, this fixes rdar://8760394 and
allows us to handle "Example 2" from http://blog.regehr.org/archives/320,
compiling it into a single 4096-byte memset:
_mad_synth_mute: ## @mad_synth_mute
## BB#0: ## %entry
pushq %rax
movl $4096, %esi ## imm = 0x1000
callq ___bzero
popq %rax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123089 91177308-0d34-0410-b5e6-96231b3b80d8
that it was leaving in loops after rotation (between the original latch
block and the original header.
With this change, it is possible for rotated loops to have just a single
basic block, which is useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123075 91177308-0d34-0410-b5e6-96231b3b80d8
1. Rip out LoopRotate's domfrontier updating code. It isn't
needed now that LICM doesn't use DF and it is super complex
and gross.
2. Make DomTree updating code a lot simpler and faster. The
old loop over all the blocks was just to find a block??
3. Change the code that inserts the new preheader to just use
SplitCriticalEdge instead of doing an overcomplex
reimplementation of it.
No behavior change, except for the name of the inserted preheader.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123072 91177308-0d34-0410-b5e6-96231b3b80d8
they all ready do). This removes two dominator recomputations prior to isel,
which is a 1% improvement in total llc time for 403.gcc.
The only potentially suspect thing is making GCStrategy recompute dominators if
it used a custom lowering strategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123064 91177308-0d34-0410-b5e6-96231b3b80d8
them into the loop preheader, eliminating silly instructions like
"icmp i32 0, 100" in fixed tripcount loops. This also better exposes the
bigger problem with loop rotate that I'd like to fix: once this has been
folded, the duplicated conditional branch *often* turns into an uncond branch.
Not aggressively handling this is pessimizing later loop optimizations
somethin' fierce by making "dominates all exit blocks" checks fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123060 91177308-0d34-0410-b5e6-96231b3b80d8
1. Take a flags argument instead of a bool. This makes
it more clear to the reader what it is used for.
2. Add a flag that says that "remapping a value not in the
map is ok".
3. Reimplement MapValue to share a bunch of code and be a lot
more efficient. For lookup failures, don't drop null values
into the map.
4. Using the new flag a bunch of code can vaporize in LinkModules
and LoopUnswitch, kill it.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123058 91177308-0d34-0410-b5e6-96231b3b80d8