into a separate function, so that it can be called from a loop using a worklist
rather than a loop traversing a whole basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122943 91177308-0d34-0410-b5e6-96231b3b80d8
This pass precomputes CFG block frequency information that can be used by the
register allocator to find optimal spill code placement.
Given an interference pattern, placeSpills() will compute which basic blocks
should have the current variable enter or exit in a register, and which blocks
prefer the stack.
The algorithm is ready to consume block frequencies from profiling data, but for
now it gets by with the static estimates used for spill weights.
This is a work in progress and still not hooked up to RegAllocGreedy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122938 91177308-0d34-0410-b5e6-96231b3b80d8
up freebsd bootloader. However, this doesn't make much sense for Darwin, whose
-Os is meant to optimize for size only if it doesn't hurt performance.
rdar://8821501
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122936 91177308-0d34-0410-b5e6-96231b3b80d8
beginning of the "main" function. The assembler complains about the invalid
suffix for the 'call' instruction. The right instruction is "callq __main".
Patch by KS Sreeram!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122933 91177308-0d34-0410-b5e6-96231b3b80d8
hasBlockValue() that was causing iterator invalidations. Many thanks to Dimitry Andric for
tracking down those invalidations!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122906 91177308-0d34-0410-b5e6-96231b3b80d8
step is to only process instructions in subloops if they have been modified by
an earlier simplification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122869 91177308-0d34-0410-b5e6-96231b3b80d8
skipping them, but it should probably use a worklist and only revisit those
instructions in subloops that have actually changed. It should probably also
use a worklist after the first iteration like instsimplify now does. Regardless,
it's only 0.3% of opt -O2 time on 403.gcc if it replaces the instcombine placed
in the middle of the loop passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122868 91177308-0d34-0410-b5e6-96231b3b80d8
fewer things into the value numbering maps, but any speedup is beneath the noise threshold on my machine
on 403.gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122844 91177308-0d34-0410-b5e6-96231b3b80d8
The analysis will be needed by both the greedy register allocator and the
X86FloatingPoint pass. It only needs to be computed once when the CFG doesn't
change.
This pass is very fast, usually showing up as 0.0% wall time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122832 91177308-0d34-0410-b5e6-96231b3b80d8
case where a static caller is itself inlined everywhere else, and
thus may go away if it doesn't get too big due to inlining other
things into it. If there are references to the caller other than
calls, it will not be removed; account for this.
This results in same-day completion of the case in PR8853.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122821 91177308-0d34-0410-b5e6-96231b3b80d8
avoids adding them to the various value numbering tables, resulting in a minor (~3%) speedup for GVN
on 40.gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122819 91177308-0d34-0410-b5e6-96231b3b80d8
when safe.
The testcase is basically this nested loop:
void foo(char *X) {
for (int i = 0; i != 100; ++i)
for (int j = 0; j != 100; ++j)
X[j+i*100] = 0;
}
which gets turned into a single memset now. clang -O3 doesn't optimize
this yet though due to a phase ordering issue I haven't analyzed yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122806 91177308-0d34-0410-b5e6-96231b3b80d8
instruction *after* the store. The store will always be deleted
if the transformation kicks in, so we'd do an N^2 scan of every
loop block. Whoops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122805 91177308-0d34-0410-b5e6-96231b3b80d8