put it in a new header System/Host.h instead.
Instead of getting the endianness from configure,
calculate it directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44959 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::getConstant, in the same way as vector floating-point
constants. This allows the legalize expansion code for @llvm.ctpop and
friends to be usable with vector types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44954 91177308-0d34-0410-b5e6-96231b3b80d8
and readnone for functions with bodies because it
broke llvm-gcc-4.2 bootstrap. It turns out that,
because of LLVM's array_ref hack, gcc was computing
pure/const attributes wrong (now fixed by turning
off the gcc ipa-pure-const pass).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44937 91177308-0d34-0410-b5e6-96231b3b80d8
2. Using zero-extended value of Scale and unsigned division is safe provided
that Scale doesn't have the sign bit set.
Previously these 2 instructions:
%p = bitcast [100 x {i8,i8,i8}]* %x to i8*
%q = getelementptr i8* %p, i32 -4
were combined into:
%q = getelementptr [100 x { i8, i8, i8 }]* %x, i32 0,
i32 1431655764, i32 0
what was incorrect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44936 91177308-0d34-0410-b5e6-96231b3b80d8
Changes from me implementing different way of representing points-to anything.
Changes from me that improve slightly on LCD.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44895 91177308-0d34-0410-b5e6-96231b3b80d8
because those with side effects will be caught by other checks in here.
Also, simplify the check for a BB in a sub loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44871 91177308-0d34-0410-b5e6-96231b3b80d8
regions of memory that have a target specific relationship, as described in the
Embedded C Technical Report.
This also implements the 2007-12-11-AddressSpaces test,
which demonstrates how address space attributes can be used in LLVM IR.
In addition, this patch changes the bitcode signature for stores (in a backwards
compatible manner), such that the pointer type, rather than the pointee type, is
encoded. This permits type information in the pointer (e.g. address space) to be
preserved for stores.
LangRef updates are forthcoming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44858 91177308-0d34-0410-b5e6-96231b3b80d8
possible before resorting to pextrw and pinsrw.
- Better codegen for v4i32 shuffles masquerading as v8i16 or v16i8 shuffles.
- Improves (i16 extract_vector_element 0) codegen by recognizing
(i32 extract_vector_element 0) does not require a pextrw.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44836 91177308-0d34-0410-b5e6-96231b3b80d8
per-function collector model. Collector is now the factory for
CollectorMetadata, so the latter may be subclassed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44827 91177308-0d34-0410-b5e6-96231b3b80d8
don't have to #include config.h in it. #including config.h breaks
other projects that have their own autoconf stuff and try to #include
the llvm headers. One obscure example is llvm-gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44825 91177308-0d34-0410-b5e6-96231b3b80d8
Thompson. Usage should be something like this:
open Llvm
open Llvm_bitreader
match read_bitcode_file fn with
| Bitreader_failure msg ->
prerr_endline msg
| Bitreader_success m ->
...;
dispose_module m
Compile with: ocamlc llvm.cma llvm_bitreader.cma
ocamlopt llvm.cmxa llvm_bitreader.cmxa
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44824 91177308-0d34-0410-b5e6-96231b3b80d8
Reimplement the xform in Analysis/ConstantFolding.cpp where we can use
targetdata to validate that it is safe. While I'm in there, fix some const
correctness issues and generalize the interface to the "operand folder".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44817 91177308-0d34-0410-b5e6-96231b3b80d8
These should probably be something like:
CFI(".cfi_def_cfa_offset 16\n")
where CFI is defined to a noop on darwin and other platforms
that don't support those directives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44803 91177308-0d34-0410-b5e6-96231b3b80d8
using the minimum possible number of bytes. For little
endian targets run on little endian machines, apints are
stored in memory from LSB to MSB as before. For big endian
targets on big endian machines they are stored from MSB to
LSB which wasn't always the case before (if the target and
host endianness doesn't match values are stored according
to the host's endianness). Doing this requires knowing the
endianness of the host, which is determined when configuring -
thanks go to Anton for this. Only having access to little
endian machines I was unable to properly test the big endian
part, which is also the most complicated...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44796 91177308-0d34-0410-b5e6-96231b3b80d8