This patch teaches fast-isel how to select a (V)CVTSI2SSrr for an integer to
float conversion, and how to select a (V)CVTSI2SDrr for an integer to double
conversion.
Added test 'fast-isel-int-float-conversion.ll'.
Differential Revision: http://reviews.llvm.org/D7698
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229589 91177308-0d34-0410-b5e6-96231b3b80d8
Change the memory operands in sse12_fp_packed_scalar_logical_alias from scalars to vectors.
That's what the hardware packed logical FP instructions define: 128-bit memory operands.
There are no scalar versions of these instructions...because this is x86.
Generating the wrong code (folding a scalar load into a 128-bit load) is still possible
using the peephole optimization pass and the load folding tables. We won't completely
solve this bug until we either fix the lowering in fabs/fneg/fcopysign and any other
places where scalar FP logic is created or fix the load folding in foldMemoryOperandImpl()
to make sure it isn't changing the size of the load.
Differential Revision: http://reviews.llvm.org/D7474
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229531 91177308-0d34-0410-b5e6-96231b3b80d8
GCC 4.8 reported two new warnings due to comparisons
between signed and unsigned integer expressions. The new warnings were
accidentally introduced by revision 229480.
Added explicit casts to silence the warnings. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229488 91177308-0d34-0410-b5e6-96231b3b80d8
- added mask types v8i1 and v16i1 to possible function parameters
- enabled passing 512-bit vectors in standard CC
- added a test for KNL intel_ocl_bi conventions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229482 91177308-0d34-0410-b5e6-96231b3b80d8
Vector zext tends to get legalized into a vector anyext, represented as a vector shuffle with an undef vector + a bitcast, that gets ANDed with a mask that zeroes the undef elements.
Combine this into an explicit shuffle with a zero vector instead. This allows shuffle lowering to match it as a zext, instead of matching it as an anyext and emitting an explicit AND.
This combine only covers a subset of the cases, but it's a start.
Differential Revision: http://reviews.llvm.org/D7666
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229480 91177308-0d34-0410-b5e6-96231b3b80d8
This allows it to match still more places where previously we would have
to fall back on floating point shuffles or other more complex lowering
strategies.
I'm hoping to replace some of the hand-rolled unpack matching with this
routine is it gets more and more clever.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229463 91177308-0d34-0410-b5e6-96231b3b80d8
to generically lower blends and is particularly nice because it is
available frome SSE2 onward. This removes a lot of the remaining domain
crossing blends in SSE2 code.
I'm hoping to replace some of the "interleaved" lowering hacks with
something closer to this which should be more principled. First, this
needs to learn how to detect and use other interleavings besides that of
the natural type provided. That will be a follow-up patch though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229378 91177308-0d34-0410-b5e6-96231b3b80d8
This blend instruction is ... really lame. The register usage is insane.
As a consequence this is probably only *barely* better than 2 pshufbs
followed by a por, and that mostly because it only has to read from
a single memory location.
However, this doesn't fix as much as I kind of expected, so more to go.
Pretty sure that the ordering and delegation of v16i8 is just really,
really bad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229373 91177308-0d34-0410-b5e6-96231b3b80d8
template now that we can use them.
This is, of course, horribly ugly because of the required recursive
formulation. Suggestions for making it less ugly welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229367 91177308-0d34-0410-b5e6-96231b3b80d8
advantage of the existence of a reasonable blend instruction.
The 256-bit vector shuffle lowering has leveraged the general technique
of decomposed shuffles and blends for quite some time, but this never
made it back into the 128-bit code, and there are a large number of
patterns where this is substantially better. For example, this removes
almost all domain crossing in vector shuffles that involve some blend
and some permutation with SSE4.1 and later. See the massive reduction
in 'shufps' for integer test cases in this commit.
This isn't perfect yet for a few reasons:
1) The v8i16 shuffle lowering continues to plague me. We don't always
form an unpack-based blend when that would be better. But the wins
pretty drastically outstrip the losses here.
2) The v16i8 shuffle lowering is just a disaster here. I never went and
implemented blend support here for some terrible reason. I'll do
that next probably. I've not updated it for now.
More variations on this technique are coming as well -- we don't
shuffle-into-unpack or shuffle-into-palignr, both of which would also be
profitable.
Note that some test cases grow significantly in the number of
instructions, but I expect to actually be faster. We use
pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are
very likely to pipeline well (two ports on most modern intel chips) and
the blend is a *very* fast instruction. The domain switch penalty will
essentially always be more than a blend instruction, which is the only
increase in tree height.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229350 91177308-0d34-0410-b5e6-96231b3b80d8
This patch refactors the existing lowerVectorShuffleAsByteShift function to add support for 256-bit vectors on AVX2 targets.
It also fixes a tablegen issue that prevented the lowering of vpslldq/vpsrldq vec256 instructions.
Differential Revision: http://reviews.llvm.org/D7596
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229311 91177308-0d34-0410-b5e6-96231b3b80d8
when that will allow it to lower with a single permute instead of
multiple permutes.
It tries to detect when it will only have to do a single permute in
either case to maximize folding of loads and such.
This cuts a *lot* of the avx2 shuffle permute counts in half. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229309 91177308-0d34-0410-b5e6-96231b3b80d8
vectors and detect equivalent inputs.
This lets the code match unpck-style instructions when only one of the
inputs are lined up but the other input is a splat and so which lanes we
pull from doesn't matter. Today, this doesn't really happen, but just by
accident. I have a patch that normalizes how we shuffle splats, and with
that patch this will be necessary for a lot of the mask equivalence
tests to work.
I don't really know how to write a test case for this specific change
until the other change lands though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229307 91177308-0d34-0410-b5e6-96231b3b80d8
don't try to do element insertion for non-zero-index floating point
vectors.
We don't have any useful patterns or lowering for element insertion into
high elements of a floating point vector, and the generic shuffle
lowering will end up being better -- namely it will fall back to unpck.
But we should try to handle other forms of element insertion before
matching unpck patterns.
While this doesn't matter much right now, I'm working on a patch that
makes unpck matching much more powerful, and that patch will break
without this re-ordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229306 91177308-0d34-0410-b5e6-96231b3b80d8
I was somewhat surprised this pattern really came up, but it does. It
seems better to just directly handle it than try to special case every
place where we end up forming a shuffle that devolves to a shuffle of
a zero vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229301 91177308-0d34-0410-b5e6-96231b3b80d8
subvectors from buildvectors. That doesn't really make any sense and it
breaks all of the down-stream matching of buildvectors to cleverly lower
shuffles.
With this, we now get the shift-based lowering of 256-bit vector
shuffles with AVX1 when we split them into 128-bit vectors. We also do
much better on the zero-extension patterns, although there remains quite
a bit of room for improvement here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229299 91177308-0d34-0410-b5e6-96231b3b80d8
least in theory.
I don't actually have a test case that benefits from this, but
theoretically, it could come up, and I don't want to try to think about
whether this is the culprit or something else is, so I'd rather just
make this code powerful. =/ Makes me sad that I can't really test it
though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229298 91177308-0d34-0410-b5e6-96231b3b80d8
lowerings -- one which decomposes into an initial blend followed by
a permute.
Particularly on newer chips, blends are handled independently of
shuffles and so this is much less bottlenecked on the single port that
floating point shuffles are executed with on Intel.
I'll be adding this lowering to a bunch of other code paths in
subsequent commits to handle still more places where we can effectively
leverage blends when they're available in the ISA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229292 91177308-0d34-0410-b5e6-96231b3b80d8
Patch to allow XOP instructions (integer comparison and integer multiply-add) to be commuted. The comparison instructions sometimes require the compare mode to be flipped but the remaining instructions can use default commutation modes.
This patch also sets the SSE domains of all the XOP instructions.
Differential Revision: http://reviews.llvm.org/D7646
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229267 91177308-0d34-0410-b5e6-96231b3b80d8
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229214 91177308-0d34-0410-b5e6-96231b3b80d8
This takes the preposterous number of patterns in this section
that were last added to in r219033 down to just plain obnoxious.
With a little more work, we might get this down to just comical.
I've added more test cases to the existing file that checks these
patterns, but it seems that some of these patterns simply don't
exist with today's shuffle lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229158 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229094 91177308-0d34-0410-b5e6-96231b3b80d8
Constant pool entries are uniqued by their contents regardless of their
type. This means that a pshufb can have a shuffle mask which isn't a
simple array of bytes.
The code path which attempts to decode the mask didn't check for
failure, causing PR22559.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228979 91177308-0d34-0410-b5e6-96231b3b80d8