Originally if D.firstSigDigit == str.end(), we will have already dereferenced
D.firstSigDigit in the first predicate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185437 91177308-0d34-0410-b5e6-96231b3b80d8
Allow a BlockFrequency to be divided by a non-zero BranchProbability
with saturating arithmetic. This will be used to compute the frequency
of a loop header given the probability of leaving the loop.
Our long division algorithm already saturates on overflow, so that was a
freebie.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185184 91177308-0d34-0410-b5e6-96231b3b80d8
* Don't try to create parent directories in unique_file. It had two problem:
* It violates the contract that it is atomic. If the directory creation
success and the file creation fails, we would return an error but the
file system was modified.
* When creating a temporary file clang would have to first check if the
parent directory existed or not to avoid creating one when it was not
supposed to.
* More efficient implementations of createUniqueDirectory and the unique_file
that produces only the file name. Now all 3 just call into a static
function passing what they want (name, file or directory).
Clang also has to be updated, so tests might fail if a bot picks up this commit
and not the corresponding clang one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185126 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r185099.
Looks like both the ppc-64 and mips bots are still failing after I reverted this
change.
Since:
1. The mips bot always performs a clean build,
2. The ppc64-bot failed again after a clean build (I asked the ppc-64
maintainers to clean the bot which they did... Thanks Will!),
I think it is safe to assume that this change was not the cause of the failures
that said builders were seeing. Thus I am recomitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185111 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r185095. This is causing a FileCheck failure on
the 3dnow intrinsics on at least the mips/ppc bots but not on the x86
bots.
Reverting while I figure out what is going on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185099 91177308-0d34-0410-b5e6-96231b3b80d8
The category which an APFloat belongs to should be dependent on the
actual value that the APFloat has, not be arbitrarily passed in by the
user. This will prevent inconsistency bugs where the category and the
actual value in APFloat differ.
I also fixed up all of the references to this constructor (which were
only in LLVM).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185095 91177308-0d34-0410-b5e6-96231b3b80d8
There are a few valid situation where we care about the structure inside a
directory, but not about the directory itself. A simple example is for unit
testing directory traversal.
PathV1 had a function like this, add one to V2 and port existing users of the
created temp file and delete it hack to using it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185059 91177308-0d34-0410-b5e6-96231b3b80d8
Currently inside APFloat fcNormal still implies the old definition of Normal
(i.e. isFiniteNonZero) instead of the proper IEEE-754R definition that the
external method isNormal() uses.
This patch prepares for the internal switch inside APFloat by converting all
references that check if a category is fcNormal directly with an indirect call
via isFiniteNonZero().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185036 91177308-0d34-0410-b5e6-96231b3b80d8
This is easier to read than the internal fixed-point representation.
If anybody knows the correct algorithm for converting fixed-point
numbers to base 10, feel free to fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184881 91177308-0d34-0410-b5e6-96231b3b80d8
This is really ugly, but it is no worse than what we have in clang right now and
it is better to get it working first and clean/optimize it afterwards.
Will be tested from clang in the next patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184802 91177308-0d34-0410-b5e6-96231b3b80d8
The method significandParts() is a helper method meant to ease access to
APFloat's significand by allowing the user to not need to be aware of whether or
not the APFloat is using memory allocated in the instance itself or in an
external array.
This assert says that one can only access the significand of FiniteNonZero/NaN
floats. This makes it cumbersome and more importantly dangerous when one wishes
to zero out the significand of a zero/infinity value since one will have to deal
with the aforementioned quandary related to how the memory in APFloat is
allocated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184711 91177308-0d34-0410-b5e6-96231b3b80d8
In the context of APFloat, seeing a macro called convolve suggests that APFloat
is using said value in some sort of convolution somewhere in the source code.
This is misleading.
I also added a documentation comment to the macro.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184710 91177308-0d34-0410-b5e6-96231b3b80d8
exponent_t is only used internally in APFloat and no exponent_t values are
exposed via the APFloat API. In light of such conditions it does not make any
sense to gum up the llvm namespace with said type. Plus it makes it clearer that
exponent_t is associated with APFloat.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184686 91177308-0d34-0410-b5e6-96231b3b80d8
Zero is used by BlockFrequencyInfo as a special "don't know" value. It also
causes a sink for frequencies as you can't ever get off a zero frequency with
more multiplies.
This recovers a 10% regression on MultiSource/Benchmarks/7zip. A zero frequency
was propagated into an inner loop causing excessive spilling.
PR16402.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184584 91177308-0d34-0410-b5e6-96231b3b80d8
IR for CUDA should use "nvptx[64]-nvidia-cuda", and IR for NV OpenCL should use "nvptx[64]-nvidia-nvcl"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184579 91177308-0d34-0410-b5e6-96231b3b80d8
in the "parent" thread, when we are using CrashRecoveryContext::RunSafelyOnThread.
When using CrashRecoveryContext::RunSafelyOnThread, we would set a CrashRecoveryContextImpl* to a thread-local variable
for the "child" thread, but CrashRecoveryContext would erroneously clear it in the "parent" thread.
The result was that if CrashRecoveryContext::RunSafelyOnThread was called again in the "child" thread it would mess up
crash-recovery for its parent.
A test for this will be added in the clang repository.
rdar://14204560
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184380 91177308-0d34-0410-b5e6-96231b3b80d8