We now emit a line table for each compile unit. To reduce the prologue size
of each line table, the files and directories used by each compile unit are
stored in std::map<unsigned, std::vector< > > instead of std::vector< >.
The prologue for a lto'ed image can be as big as 93K. Duplicating 93K for each
compile unit causes a huge increase of debug info. With this patch, each
prologue will only emit the files required by the compile unit.
rdar://problem/13342023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176605 91177308-0d34-0410-b5e6-96231b3b80d8
excluding visibility bits.
Generic STO handling at the Target level.
The st_other field of the ELF symbol table is one
byte in size. The first 2 bytes are used for generic
visibility and are currently handled by llvm.
The other six bits are processor specific and need
to be set at the target level.
A couple of notes:
The new static methods for accessing and setting the "other"
flags in include/llvm/MC/MCELF.h match the style guide
and not the other methods in the file. I don't like the
inconsistency, but feel I should follow the prescribed
lowerUpper() convention.
STO_ value definitions are not specified in gnu land as
consistently as the STT_ and STB_ fields. Probably because
the latter were defined in a standards doc and the former
defined partially in code. I have stuck with the full byte
definition of the flags.
Contributer: Zoran Jovanovic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175561 91177308-0d34-0410-b5e6-96231b3b80d8
Also, allow _EMIT and __EMIT for the emit directive. We already do the same
for TYPE, SIZE, and LENGTH.
rdar://13200215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175008 91177308-0d34-0410-b5e6-96231b3b80d8
I have some uncommitted changes to the cast code that catch this sort of thing
at compile-time but I still need to do some other cleanup before I can enable
it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174853 91177308-0d34-0410-b5e6-96231b3b80d8
For example, ARM has several instructions with a literal '#0' immediate in the syntax
that's not represented as an actual operand. The asm matcher is expected a token
operand, but the parser will have created an immediate operand. This is currently
handled by dedicated per-instruction C++ munging of the ParsedAsmOperand list, but
will be better handled by this hook.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174487 91177308-0d34-0410-b5e6-96231b3b80d8
We generate one line table for each compilation unit in the object file.
Reviewed by Eric and Kevin.
rdar://problem/13067005
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174445 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when a fragment is relaxed, its size is modified, but its
offset is not (it gets laid out as a side effect of checking whether
it needs relaxation), then all subsequent fragments are invalidated
because their offsets need to change. When bundling is enabled,
relaxed fragments need to get laid out again, because the increase in
size may push it over a bundle boundary. So instead of only
invalidating subsequent fragments, also invalidate the fragment that
gets relaxed, which causes it to get laid out again.
This patch also fixes some trailing whitespace and fixes the
bundling-related debug output of MCFragments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174401 91177308-0d34-0410-b5e6-96231b3b80d8
caught this, but I want that in a separate commit in case there is
a need to revert the actual functional bit as part of reverting other
patches. This way, the commits relating to just getting the RTTI bits in
place are separate from the functional changes that start using them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174117 91177308-0d34-0410-b5e6-96231b3b80d8
isa<> and dyn_cast<>. In several places, code is already hacking around
the absence of this, and there seem to be several interfaces that might
be lifted and/or devirtualized using this.
This change was based on a discussion with Jim Grosbach about how best
to handle testing for specific MCStreamer subclasses. He said that this
was the correct end state, and everything else was too hacky so
I decided to just make it so.
No functionality should be changed here, this is just threading the kind
through all the constructors and setting up the classof overloads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174113 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174054 91177308-0d34-0410-b5e6-96231b3b80d8
and update ELF header e_flags.
Currently gathering information such as symbol,
section and data is done by collecting it in an
MCAssembler object. From MCAssembler and MCAsmLayout
objects ELFObjectWriter::WriteObject() forms and
streams out the ELF object file.
This patch just adds a few members to the MCAssember
class to store and access the e_flag settings. It
allows for runtime additions to the e_flag by
assembler directives. The standalone assembler can
get to MCAssembler from getParser().getStreamer().getAssembler().
This patch is the generic infrastructure and will be
followed by patches for ARM and Mips for their target
specific use.
Contributer: Jack Carter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173882 91177308-0d34-0410-b5e6-96231b3b80d8
Add the x32 environment kind to the triple, and separate the concept of
pointer size and callee save stack slot size, since they're not equal
on x32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173175 91177308-0d34-0410-b5e6-96231b3b80d8
AT_producer. Which includes clang's version information so we can tell
which version of the compiler was used.
This is the first of two steps to allow us to do that. This is the llvm-mc
change to provide a method to set the AT_producer string. The second step,
coming soon to a clang near you, will have the clang driver pass the value
of getClangFullVersion() via an flag when invoking the integrated assembler
on assembly source files.
rdar://12955296
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172630 91177308-0d34-0410-b5e6-96231b3b80d8
Since we already have this type it's a shame to keep dragging a pair of object
and method around explicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172584 91177308-0d34-0410-b5e6-96231b3b80d8
using the DW_FORM_GNU_addr_index and a separate .debug_addr section which
stays in the executable and is fully linked.
Sneak in two other small changes:
a) Print out the debug_str_offsets.dwo section.
b) Change form we're expecting the entries in the debug_str_offsets.dwo
section to take from ULEB128 to U32.
Add tests for all of this in the fission-cu.ll test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172578 91177308-0d34-0410-b5e6-96231b3b80d8
into which we can emit single instructions without fixups (which is most
instructions). This is an optimization required because MCDataFragment
is prety large (240 bytes on x64), with no change in functionality.
For large programs, this reduces memory usage overhead required for bundling
by 40%.
To make the code as palatable as possible, the MCEncodedFragment interface was
further fragmented (no pun intended) and MCEncodedFragmentWithFixups is used
as the interface to work against when the user expects fixups. MCDataFragment
and MCRelaxableFragment implement this interface, while the new
MCCompactEncodedInstFragment implements MCEncodeFragment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172572 91177308-0d34-0410-b5e6-96231b3b80d8
This finally allows AsmParser to no longer list GenericAsmParser as a friend.
All member vars directly accessed by GenericAsmParser have been properly
encapsulated and exposed through the MCAsmParser interface. This reduces the
coupling between AsmParser and GenericAsmParser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172490 91177308-0d34-0410-b5e6-96231b3b80d8
Now that it behaves itself in terms of streamer independence (r172450), this
method can be moved to MCAsmParser to be available to all extensions,
overriding, etc.
-- -This line, and those below, will be ignored--
M lib/MC/MCParser/AsmParser.cpp
M include/llvm/MC/MCParser/MCAsmParser.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172451 91177308-0d34-0410-b5e6-96231b3b80d8
The aim of this patch is to fix the following piece of code in the
platform-independent AsmParser:
void AsmParser::CheckForValidSection() {
if (!ParsingInlineAsm && !getStreamer().getCurrentSection()) {
TokError("expected section directive before assembly directive");
Out.SwitchSection(Ctx.getMachOSection(
"__TEXT", "__text",
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
0, SectionKind::getText()));
}
}
This was added for the "-n" option of llvm-mc.
The proposed fix adds another virtual method to MCStreamer, called
InitToTextSection. Conceptually, it's similar to the existing
InitSections which initializes all common sections and switches to
text. The new method is implemented by each platform streamer in a way
that it sees fit. So AsmParser can now do this:
void AsmParser::CheckForValidSection() {
if (!ParsingInlineAsm && !getStreamer().getCurrentSection()) {
TokError("expected section directive before assembly directive");
Out.InitToTextSection();
}
}
Which is much more reasonable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172450 91177308-0d34-0410-b5e6-96231b3b80d8
Since it's used by extensions. One further step to fully decoupling
GenericAsmParser from an intimate knowledge of the internals of AsmParser,
pointing it to the MCASmParser interface instead (like all other parser
extensions do).
Since this change moves the MacroArgument type to the interface header, it's
renamed to be a bit more descriptive in a general context.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172449 91177308-0d34-0410-b5e6-96231b3b80d8
The methods are also exposed via the MCAsmParser interface, which allows more
than one client to control them. Previously, GenericAsmParser was playing with
a member var in AsmParser directly (by virtue of being its friend).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172440 91177308-0d34-0410-b5e6-96231b3b80d8
This was an experimental option, but needs to be defined
per-target. e.g. PPC A2 needs to aggressively hide latency.
I converted some in-order scheduling tests to A2. Hal is working on
more test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171946 91177308-0d34-0410-b5e6-96231b3b80d8
method because getContents().size() already covers it. So computeFragmentSize
can use the generic MCEncodedFragment interface when querying both Data and
Relaxable fragments for contents sizes.
No change in functionality
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171903 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py script.
Most of these are updating the new R600 target and fixing up a few
regressions that have creeped in since the last time I sorted the
includes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171362 91177308-0d34-0410-b5e6-96231b3b80d8