Normally, patterns like (add x, (setcc cc ...)) will be folded into
(csel x, x+1, not cc). However, if there is a ZEXT after SETCC, they
won't be folded. This patch recognizes the ZEXT and allows the
generation of CSINC.
This patch fixes bug 19680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208660 91177308-0d34-0410-b5e6-96231b3b80d8
This is a slightly different approach to AArch64 (the base instruction
definitions aren't quite right for that to work), but achieves the
same thing and reduces C++ hackery in AsmParser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208605 91177308-0d34-0410-b5e6-96231b3b80d8
If this code triggers, any immediate has already been validated so it can't
possibly trigger a diagnostic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208564 91177308-0d34-0410-b5e6-96231b3b80d8
In terms of assembly, these have too much overlap to be neatly modelled as
disjoint classes: in many cases "lsl" is an acceptable alternative to either
"uxtw" or "uxtx".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208563 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, since ARM64 models all these instructions as aliases,
the checks need to be done at the time the alias is seen rather than
during instruction validation as AArch64 does it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208529 91177308-0d34-0410-b5e6-96231b3b80d8
We must validate the value type in TLI::getRegisterByName, because if we
don't and the wrong type was used with the IR intrinsic, then we'll assert
(because we won't be able to find a valid register class with which to
construct the requested copy operation). For PPC64, additionally, the type
information is necessary to decide between the 64-bit register and the 32-bit
subregister.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208508 91177308-0d34-0410-b5e6-96231b3b80d8
We were swapping the true & false results while testing for FMAX/FMIN,
but not putting them back to the original state if the later checks
failed.
Should fix PR19700.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208469 91177308-0d34-0410-b5e6-96231b3b80d8
The parsing of ADD/SUB shifted immediates needs to be done explicitly so
that better diagnostics can be emitted, as a side effect this also
removes some of the hacks in the current method of handling this operand
type.
Additionally remove manual CMP aliasing to ADD/SUB and use InstAlias
instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208329 91177308-0d34-0410-b5e6-96231b3b80d8
this patch disables the dead register elimination pass and the load/store pair
optimization pass at -O0. The ILP optimizations don't require the optimization
level to be checked because the call to addILPOpts is predicated with the
necessary check. The AdvSIMDScalar pass is disabled by default at all
optimization levels. This patch leaves that pass disabled by default.
Also, move command-line options into ARM64TargetMachine.cpp and add a few
additional flags to aid in debugging. This fixes an issue with the
-debug-pass=Structure flag where passes were printed, but not actually run
(i.e., AdvSIMDScalar pass).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208223 91177308-0d34-0410-b5e6-96231b3b80d8
When performing a scalar comparison that feeds into a vector select,
it's actually better to do the comparison on the vector side: the
scalar route would be "CMP -> CSEL -> DUP", the vector is "CM -> DUP"
since the vector comparisons are all mask based.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208210 91177308-0d34-0410-b5e6-96231b3b80d8
The AAPCS states that values passed in registers must have a value as though
they had been loaded with "LDR". LDR is equivalent to "LD1.64 vX.1D" - that is,
loading scalars to vector registers and loading 1-element vectors is equivalent.
The logic implemented here is to ensure that at all call boundaries and during
formal argument lowering all vectors are treated as their bitwidth-based floating
point scalar counterpart, which is always one of f64 or f128 (v2i32 -> f64,
v4i32 -> f128 etc). A BITCAST is inserted so that the appropriate REV will be
generated during code generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208198 91177308-0d34-0410-b5e6-96231b3b80d8
Because we've canonicalised on using LD1/ST1, every time we do a bitcast
between vector types we must do an equivalent lane reversal.
Consider a simple memory load followed by a bitconvert then a store.
v0 = load v2i32
v1 = BITCAST v2i32 v0 to v4i16
store v4i16 v2
In big endian mode every memory access has an implicit byte swap. LDR and
STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
is, they treat the vector as a sequence of elements to be byte-swapped.
The two pairs of instructions are fundamentally incompatible. We've decided
to use LD1/ST1 only to simplify compiler implementation.
LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
the original code sequence: v0 = load v2i32
v1 = REV v2i32 (implicit)
v2 = BITCAST v2i32 v1 to v4i16
v3 = REV v4i16 v2 (implicit)
store v4i16 v3
But this is now broken - the value stored is different to the value loaded
due to lane reordering. To fix this, on every BITCAST we must perform two
other REVs:
v0 = load v2i32
v1 = REV v2i32 (implicit)
v2 = REV v2i32
v3 = BITCAST v2i32 v2 to v4i16
v4 = REV v4i16
v5 = REV v4i16 v4 (implicit)
store v4i16 v5
This means an extra two instructions, but actually in most cases the two REV
instructions can be combined into one. For example:
(REV64_2s (REV64_4h X)) === (REV32_4h X)
There is also no 128-bit REV instruction. This must be synthesized with an
EXT instruction.
Most bitconverts require some sort of conversion. The only exceptions are:
a) Identity conversions - vNfX <-> vNiX
b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
Even though there are hundreds of changed lines, I have a fairly high confidence
that they are somewhat correct. The changes to add two REV instructions per
bitcast were pretty mechanical, and once I'd done that I threw the resulting
.td at a script I wrote which combined the two REVs together (and added
an EXT instruction, for f128) based on an instruction description I gave it.
This was much less prone to error than doing it all manually, plus my brain
would not just have melted but would have vapourised.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208194 91177308-0d34-0410-b5e6-96231b3b80d8
This completes the port of r204814 (cpirker "AArch64_BE function argument
passing for ARM ABI") from AArch64 to ARM64, and fixes a bunch of issues
found during later development along the way. The biggest of these was
that the alignment fixup logic wasn't replicated into all the places it
should have been.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208192 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208104 91177308-0d34-0410-b5e6-96231b3b80d8