Immutable DILineInfo doesn't bring any benefits and complicates
code. Also, use std::string instead of SmallString<16> for file
and function names - their length can vary significantly.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206654 91177308-0d34-0410-b5e6-96231b3b80d8
Since LLVM currently only supports WinCOFF, assume that the input is WinCOFF
rather than another type of COFF file (ECOFF/XCOFF). If the architecture is
detected as thumb (e.g. the file has a IMAGE_FILE_MACHINE_ARMNT magic) then use
a triple of thumbv7-windows.
This allows for objdump to properly handle WoA object files without having to
specify the target triple manually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206446 91177308-0d34-0410-b5e6-96231b3b80d8
This patch re-introduces the MCContext member that was removed from
MCDisassembler in r206063, and requires that an MCContext be passed in at
MCDisassembler construction time. (Previously the MCContext member had been
initialized in an ad-hoc fashion after construction). The MCCContext member
can be used by MCDisassembler sub-classes to construct constant or
target-specific MCExprs.
This patch updates disassemblers for in-tree targets, and provides the
MCRegisterInfo instance that some disassemblers were using through the
MCContext (previously those backends were constructing their own
MCRegisterInfo instances).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206241 91177308-0d34-0410-b5e6-96231b3b80d8
Once the auxiliary fields relating to the filename have been inspected, any
following auxiliary fields need not be visited as they have been consumed (the
following fields comprise the filepath as a single unit).
Adjust the test to catch this even if ASAN is not enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206190 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than switching behaviour on whether a previous symbol has an auxiliary
symbol record for the next count of elements, simply iterate over the auxiliary
symbols right after processing the current symbol entry. This makes the
behaviour much simpler to follow and similar to llvm-readobj and yaml2obj.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206146 91177308-0d34-0410-b5e6-96231b3b80d8
If a filename is a multiple of 18 characters, there will be no null-terminator.
This will result in an invalid access by the constructed StringRef. Add a test
case to exercise this and fix that handling. Address this same vulnerability in
llvm-readobj as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206145 91177308-0d34-0410-b5e6-96231b3b80d8
The auxiliary file records are contiguous and only contain the filename.
Construct a StringRef directly rather than copying to a temporary buffer.
Suggested by majnemer on IRC!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206139 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for file auxiliary symbol entries in COFF symbol tables. A COFF
symbol table with a FILE entry is followed by sizeof(__FILE__) / 18 auxiliary
symbol records which contain the filename. Read them and form the original
filename that the record contains. Then display the name in the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206126 91177308-0d34-0410-b5e6-96231b3b80d8
The current state of affairs has auxiliary symbols described as a big
bag of bytes. This is less than satisfying, it detracts from the YAML
file as being human readable.
Instead, allow for symbols to optionally contain their auxiliary data.
This allows us to have a much higher level way of describing things like
weak symbols, function definitions and section definitions.
This depends on D3105.
Differential Revision: http://llvm-reviews.chandlerc.com/D3092
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204214 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary setup change to support a renaming of Windows target
triples. Split the object file format information out of the environment into a
separate entity. Unfortunately, file format was previously treated as an
environment with an unknown OS. This is most obvious in the ARM subtarget where
the handling for macho on an arbitrary platform switches to AAPCS rather than
APCS (as per Apple's needs).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203160 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
Unwind info contents were indented at the same level as function table
contents. That's a bit confusing because the unwind info is pointed by
function table. In other places we usually increment indentation depth
by one when dereferncing a pointer.
This patch also removes extraneous newlines between function tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202879 91177308-0d34-0410-b5e6-96231b3b80d8
The original code does not work correctly on executable files because the
code is written in such a way that only object files are assumed to be given
to llvm-objdump.
Contents of RuntimeFunction are different between executables and objects. In
executables, fields in RuntimeFunction have actual addresses to unwind info
structures. On the other hand, in object files, the fields have zero value,
but instead there are relocations pointing to the fields, so that Linker will
fill them at link-time.
So, when we are reading an object file, we need to use relocation info to
find the location of unwind info. When executable, we should just look at the
values in RuntimeFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202785 91177308-0d34-0410-b5e6-96231b3b80d8
The current COFF unwind printer tries to print SEH handler function names,
assuming that it can always find function names in string table. It crashes
if file being read has no symbol table (i.e. executable).
With this patch, llvm-objdump prints SEH handler's RVA if there's no symbol
table entry for that RVA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202466 91177308-0d34-0410-b5e6-96231b3b80d8
boundaries.
It is possible to create an ELF executable where symbol from say .text
section 'points' to the address outside the section boundaries. It does
not have a sense to disassemble something outside the section.
Without this fix llvm-objdump prints finite or infinite (depends on
the executable file architecture) number of 'invalid instruction
encoding' warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202083 91177308-0d34-0410-b5e6-96231b3b80d8
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202052 91177308-0d34-0410-b5e6-96231b3b80d8
SEH table addresses are VA in COFF file. In this patch we convert VA to RVA
before printing it, because dumpbin prints them as RVAs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201760 91177308-0d34-0410-b5e6-96231b3b80d8
Load Configuration Table may contain a pointer to SEH table. This patch is to
print the offset to the table. Printing SEH table contents is a TODO.
The layout of Layout Configuration Table is described in Microsoft PE/COFF
Object File Format Spec, but the table's offset/size descriptions seems to be
totally wrong, at least in revision 8.3 of the spec. I believe the table in
this patch is the correct one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201638 91177308-0d34-0410-b5e6-96231b3b80d8
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200442 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a regression introduced by r182908, which broke
llvm-objdump's ability to display relocations inline in a disassembly
dump for ELF object files.
That change removed a SectionRelocMap from Object/ELF.h, which we
recreate in llvm-objdump.cpp.
I discovered this regression via an out-of-tree test
(test/NaCl/X86/pnacl-hides-sandbox-x86-64.ll) which used llvm-objdump.
Note that the "Unknown" string in the test output on i386 isn't quite
right, but this appears to be a pre-existing bug.
Differential Revision: http://llvm-reviews.chandlerc.com/D2559
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200090 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
The constructors of classes deriving from Binary normally take an error_code
as an argument to the constructor. My original intent was to change them
to have a trivial constructor and move the initial parsing logic to a static
method returning an ErrorOr. I changed my mind because:
* A constructor with an error_code out parameter is extremely convenient from
the implementation side. We can incrementally construct the object and give
up when we find an error.
* It is very efficient when constructing on the stack or when there is no
error. The only inefficient case is where heap allocating and an error is
found (we have to free the memory).
The result is that this is a much smaller patch. It just standardizes the
create* helpers to return an ErrorOr.
Almost no functionality change: The only difference is that this found that
we were trying to read past the end of COFF import library but ignoring the
error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199770 91177308-0d34-0410-b5e6-96231b3b80d8