This allows the user/front-end to specify a model that is better
than what LLVM would choose by default. For example, a variable
might be declared as
@x = thread_local(initialexec) global i32 42
if it will not be used in a shared library that is dlopen'ed.
If the specified model isn't supported by the target, or if LLVM can
make a better choice, a different model may be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159077 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PR5997.
These transforms were disabled because codegen couldn't deal with other
uses of trunc(x). This is now handled by the peephole pass.
This causes no regressions on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159003 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Performance optimizations:
- SwitchInst: case values stored separately from Operands List. It allows to make faster access to individual case value numbers or ranges.
- Optimized IntItem, added APInt value caching.
- Optimized IntegersSubsetGeneric: added optimizations for cases when subset is single number or when subset consists from single numbers only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158997 91177308-0d34-0410-b5e6-96231b3b80d8
- provide more extensive set of functions to detect library allocation functions (e.g., malloc, calloc, strdup, etc)
- provide an API to compute the size and offset of an object pointed by
Move a few clients (GVN, AA, instcombine, ...) to the new API.
This implementation is a lot more aggressive than each of the custom implementations being replaced.
Patch reviewed by Nick Lewycky and Chandler Carruth, thanks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158919 91177308-0d34-0410-b5e6-96231b3b80d8
With this change, we avoid relying on the IR Builder to constant fold the operations.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158829 91177308-0d34-0410-b5e6-96231b3b80d8
I'll admit I'm not entirely satisfied with this change, but it seemed
the cleanest option. Other suggestions quite welcome
The issue is that the traits specializations have static methods which
return the typedef'ed PHI_iterator type. In both the IR and MI layers
this is typedef'ed to a custom iterator class defined in an anonymous
namespace giving the types and the functions returning them internal
linkage. However, because the traits specialization is defined in the
'llvm' namespace (where it has to be, specialized template lives there),
and is in turn used in the templated implementation of the SSAUpdater.
This led to the linkage conflict that Clang now warns about.
The simplest solution to me was just to define the PHI_iterator as
a nested class inside the trait specialization. That way it still
doesn't get scoped widely, it can't be accidentally reused somewhere,
etc. This is a little gross just because nested class definitions are
a little gross, but the alternatives seem more ad-hoc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158799 91177308-0d34-0410-b5e6-96231b3b80d8
The present implementation handles only TBAA and FP metadata, discarding everything else.
For debug metadata, the current behavior is maintained (the debug metadata associated with
one of the instructions will be kept, discarding that attached to the other).
This should address PR 13040.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158606 91177308-0d34-0410-b5e6-96231b3b80d8
Dynamic GEPs created by SROA needed to insert extra "i32 0"
operands to index through structs and arrays to get to the
vector being indexed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158590 91177308-0d34-0410-b5e6-96231b3b80d8
For non-address users, Base and Scaled registers are not specially
associated to fit an address mode, so SCEVExpander should apply normal
expansion rules. Otherwise we may sink computation into inner loops
that have already been optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158537 91177308-0d34-0410-b5e6-96231b3b80d8
linkonce linkage. For example, it is not valid to add unnamed_addr.
This also fixes a crash in g++.dg/opt/static5.C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158528 91177308-0d34-0410-b5e6-96231b3b80d8
example degenerate phi nodes and binops that use themselves in unreachable code.
Thanks to Charles Davis for the testcase that uncovered this can of worms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158508 91177308-0d34-0410-b5e6-96231b3b80d8
since then the entire expression must equal zero (similarly for other operations
with an absorbing element). With this in place a bunch of reassociate code for
handling constants is dead since it is all taken care of when linearizing. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158398 91177308-0d34-0410-b5e6-96231b3b80d8
This patch extends FoldBranchToCommonDest to fold unconditional branches.
For unconditional branches, we fold them if it is easy to update the phi nodes
in the common successors.
rdar://10554090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158392 91177308-0d34-0410-b5e6-96231b3b80d8
POD type, causing memory corruption when mapping to APInts with bitwidth > 64.
Merge another crash testcase into crash.ll while there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158369 91177308-0d34-0410-b5e6-96231b3b80d8
topologies, it is quite possible for a leaf node to have huge multiplicity, for
example: x0 = x*x, x1 = x0*x0, x2 = x1*x1, ... rapidly gives a value which is x
raised to a vast power (the multiplicity, or weight, of x). This patch fixes
the computation of weights by correctly computing them no matter how big they
are, rather than just overflowing and getting a wrong value. It turns out that
the weight for a value never needs more bits to represent than the value itself,
so it is enough to represent weights as APInts of the same bitwidth and do the
right overflow-avoiding dance steps when computing weights. As a side-effect it
reduces the number of multiplies needed in some cases of large powers. While
there, in view of external uses (eg by the vectorizer) I made LinearizeExprTree
static, pushing the rank computation out into users. This is progress towards
fixing PR13021.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158358 91177308-0d34-0410-b5e6-96231b3b80d8
This saves a cast, and zext is more expensive on platforms with subreg support
than trunc is. This occurs in the BSD implementation of memchr(3), see PR12750.
On the synthetic benchmark from that bug stupid_memchr and bsd_memchr have the
same performance now when not inlining either function.
stupid_memchr: 323.0us
bsd_memchr: 321.0us
memchr: 479.0us
where memchr is the llvm-gcc compiled bsd_memchr from osx lion's libc. When
inlining is enabled bsd_memchr still regresses down to llvm-gcc memchr time,
I haven't fully understood the issue yet, something is grossly mangling the
loop after inlining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158297 91177308-0d34-0410-b5e6-96231b3b80d8
-%a + 42
into
42 - %a
previously we were emitting:
-(%a + 42)
This fixes the infinite loop in PR12338. The generated code is still not perfect, though.
Will work on that next
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158237 91177308-0d34-0410-b5e6-96231b3b80d8
problem was that by moving instructions around inside the function, the pass
could accidentally move the iterator being used to advance over the function
too. Fix this by only processing the instruction equal to the iterator, and
leaving processing of instructions that might not be equal to the iterator
to later (later = after traversing the basic block; it could also wait until
after traversing the entire function, but this might make the sets quite big).
Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158226 91177308-0d34-0410-b5e6-96231b3b80d8
can move instructions within the instruction list. If the instruction just
happens to be the one the basic block iterator is pointing to, and it is
moved to a different basic block, then we get into an infinite loop due to
the iterator running off the end of the basic block (for some reason this
doesn't fire any assertions). Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158199 91177308-0d34-0410-b5e6-96231b3b80d8